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The adiabatic elastic constants of single-crystal ammonium bromide have been measured as functions

of temperature and pressure by a pulse-superposition technique. The values at 1 atm and 300°K are: ¢, =
3.414, C' = (cu—ai2) /2=1.316, and ¢44=0.722, in units of 10" dyn cm™2. Measurements of ¢;; and C’ were
not made below the lambda transition at 234.5°K because of a sudden increase in attenuation; cys was not
attenuated in this manner and was measured from 105° to 320°K. The elastic constants were measured
as functions of pressure between 0 and 12 kbar at constant temperatures which ranged from 255° to 315°K.
In this region, which is far from the lambda line, disordered ammonium bromide behaves like a normal

CsCl-type crystal.

—

INTRODUCTION

LAMBDA transition at 234.5°K in crystalline
'meonium bromidg was ﬁrst discovere(l from

the “relative onentaﬂons of .uljaccnt ammomum 1ons
However, there are important dillerences between the
ordering process in NHBr and that in NH,Cl, which
undergoes a cooperative order—disorder transition at
about the same temperature (242.8°K). X-ray,? neu-
tron-diffraction,® Raman,* and infrared® investigations
show that above their critical temperatures both NHBr
and NH4CI have a CsCl-type cubic structure with the
tetrahedral ammonium ions oriented at random with

respect to the two equivalent positions in the cubic cell

(hydrogen atoms pointing toward nearest-neighbor
halide ions) . Hettich® observed that ammonium bromide
does not become piezoelectric below the lambda point
but does exhibit double refraction. This result and the
low-temperature Raman spectrum led Menzies and
Mills* to suggest that the ammonium ions in two ad-
jacent unit cells were antiparallel (have opposite
orientations relative to the crystallographic axés). Low-
temperature x-ray studies’” have shown that the crystal

* This work was supported in part by the Joint Services Elec-
tronics Program under Contract DA 36-039-AMC-03200 (E),
and in part by the Advanced Research Projects Agency.

T Present address: Bell Telephone Laboratories, Ific., Murray
Hill, New Jersey.

L F, Simon, C. V. Simson, and M. Ruhemann, Z Physik.
Chem. 129, 34:4 (1927); A. G. Cole, Ph.D. thesis, MIT, 1952.

*F. Simon and C. V. Simson, Nalur\viss. 14, 880 (]')26);
G. Bartlett and I. Langmuir, J. Am. Chem. Soc. 43, 84 (1921).

3 H. A. Levy and S. W. Peterson, Phys. Rev. 83, 1270 (1951);
86, 766 (1952); J. Am. Chem. Soc. 75 1536 (1932)

1A, C. Mennu and H. R. Mills, l’roc Roy. Soc. {(London)
A148, 407 (1935); R. S. Krishnan, Proc. Indian Acad. Sci. 206A,
432 (1947); 27A, 321 (1948).

5F L. W'lqner and D. I'. Hornig, J. Chem. Phys. 18, 296
(1950); J. Chem. Phys. 18, 305 (1950).

¢ A. Hettich and A. mhlmu Z. Physik 50, 249 (1928);
Hettich, Z. Physik. Chem. 1\168 353 (1934).

77J. A. A. Ketelaar, Nature 134 250 (1934); J. Weinle and H.
Saini, Helv. Phys. Acta 9, 515 1936) V. Hou K. Il«i:.Lum-n,
and M. Varteva, Ann. Acad. Sci. Fenn. Ser. A. VI, No. 144,
1-12 (1964).

structure of NHBr becomes tetragonal below the
transition, and the neutron-diffraction work? establishes |
the location of the hydrogen atoms and confirms that
this phase is ordered. The tetragonal unit cell, as shown
in Fig. 1, contains two molecules of ammonium bromide,

I'16. 1. Unit cell for y-phase (ordered tetragonal) ammomumI
bromide. [From E. L. Wagner and D. F. Hornig, J. Chem. Phys.
18, 305 (1950).] 3 ‘

The ammonium ions are antiparallel ordered in the

—a, plane and parallel ordered along the a3 or tetrag: |
onal axis. The antiparallel ordering of ammonium ions
is stabilized by the bromide ions which are displaced
along the tetragonal axis alternately in positive and|
negative directions with respect to the a;—as plane by |
uay where 2=0.02. The tetragonal distortion is very|
slight, amounting to an extension of the a3 axis by only
0.39% relative to the a; and a, axes.” In contrast, the
low-temperature ordered phase in ammonium chloride |
is cubic (CsClI type), and all the ammonium ions are
parallel (have same relative orientation with respect to
crystallographic axes).

The thermal expansion data also show a markedf
difference between NH Br and NH,Cl. In NH,C], the/
lattice undergoes an anomalous contraction® when

8Y. Sakamoto, J. Sci. Hiroshima Univ. A18, 95 (1954).
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ELASTIC

ordering occurs on cooling the crystal below the lambda
temperature. In NHyBr the situation is reversed; on
cooling there is an anomalous lattice expansion® as the
bromide crystal undergoes the transition to the ordered
tetragonal form. These volume changes associated with
changes in ordering make it easy to follow the transition
temperatures as a function of applied pressure. Steven-
son'® has obtained the phase diagrams of ammonium
chloride, bromide and iodide. His phase diagram for
ammonium bromide is reproduced in Fig. 2. (The region
encompassed by the sloping lines labeled V; to V7 in
this figure indicates the region of the phase diagram
studied in the present investigation.) The 8, v, and &
phases correspond to the structures disordered cubic
(CsCl), antiparallel ordered tetragonal and parallel
ordered cubic (CsCl), respectively. An « phase corre-
sponding to a disordered NaCl-type cubic structure
occurs at high temperatures but is not shown here.
There is also a very pronounced hysteresis associated
with the y—8 order—order transition at 1 atm, which is
not shown in this figure.

The present paper reports on a variety of ultrasonic
velocity measurements which have been made on
single-crystal ammonium bromide. Both longitudinal
and transverse waves were studied over a wide range
of pressure (0 to 12 kbar) at several constant tempera-
tures in the range 255°-315°K. These data all pertain
to the disordered phase away from any transition line,
and should provide a clear example of the “normal”
behavior of a CsCl-type ammonium halide free from
any effects due to ordering. Velocity measurements
have also been made as a function of temperature at
1 atm, although data could be obtained below the
lambda temperature (234.5°K) only for the transverse
wave associated with ¢y

This investigation is closely related to previous
studies'*? of the elastic constants of ammonium chloride
as functions of temperature and pressure. These studics
show that the shear elastic constants for ammonium
chloride (especially ¢q4) varied almost linearly with the
volume. Since the volumes of ammonium chloride and
bromide vary in an opposite manner at the lambda
temperature, we would expect that ¢y should also vary
in an opposite manner. For ammonium chloride, cy
increases markedly as the temperature is lowered
through the transition; therefore cy for the bromide
would be expected to decrease.

The results presented below are given in terms of
the variation of the three adiabatic elastic constants ¢y,
¢y, €', which can be obtained directly from the experi-
mental sound velocities, Third-order elastic constants

9F. Simon and R. Bergmann, Z. Physik. Chem. 8B, 255
(1930).
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(1963).
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I'16. 2. Phase diagram for NHBr. The g8 phase corresponds
to a disordered, CsCl-type cubic phase; the ¥ phase to an (anti-
parallel) ordered tetragonal phase; the é phase to a (parallel)
ordered, CsCl-type cubic phase. The vertical bars represent
transition points as determined by the static volume measure-
ments of Stevenson (Ref. 10). The set of sloping lines labeled
1"y through V7 represent isochores at various volumes.

are not used, and for pressures above 1 atm the quan-
tities cu, ¢y, and C* are “effective” elastic constants.!s
The relations between the ultrasonic velocities and the
elastic constants of a cubic crystal are well known:

Propagation in the [100] direction
(1)
(2)

where p is the mass density of the crystal, U, is the
velocity of the longitudinal sound wave, and U, is the
velocity of a transverse wave polarized in any direction
perpendicular to the [100] axis.

611=PUIZ,

cs=pU2,

Propagation in the [1107] direction
C'= ((11“(712) /2 =pU?
cntcaa— CI=PUL'2,

(3)
(4)

where Uy is the velocity of the longitudinal wave and
Ui is the velocity of a transverse wave polarized
perpendicular to the [001] axis. Values of U, were
measured only at 1 atm from 250° to 300°K as a check
on the internal consistency of the data.

Since the crystal structure of ammonium bromide
changes from cubic to tetragonal below the S~y lambda
transition, one must consider the effect of this symmetry
change on the clastic constants of a crystalline sample.
The tetragonal axis a; is now not equivalent to the
other axes, and therefore cg7cn, ¢, and ces7cas
in the low-temperature phase. Since data were obtained

13 R, N. Thurston, J. Acoust. Soc. Am. 37, 348 (1965).
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below T only for transverse waves propagating along
a [[100] axis in the cubic phase, we shall give the appro-
priate equations in the tetragonal phase only for that
type of wave. When an oriented cubic crystal becomes
tetragonal, the transverse velocity U, is still given by
Lq. (2) 1f the tetragonal axis lies parallel to either the
direction of wave propagation or the direction of
polarization (particle motion). In case the tetragonal
axis is oriented perpendicular to botk the direction of
propagation and the direction of polarization, U, is then
given by pUfl=cg. It is likely that a cubic NHBr
single crystal is transformed below 7% into a sample
with small tetragonal domains, in which a; is oriented
parallel to the former «, y, or z axes. If this is so, then
the measured ultrasonic velocity will be some kind of
mechanical average denoted by éia.

EXPERIMENTAL WORK

Ultrasonic velocity measurements were made by a
MecSkimin pulse-superposition method™ % at a frecuency
of 20 Mc/sec. Although this method is experimentally
and computationally more difficult than the pulse-echo
method, it is capable of very high accuracy since the
basic measurement involves a frequency value rather
than a time delay and it is possible to evaluate quantita-
tively the effect of the phase shift y associated with
reflection of the sound wave at the transducer-seal
end of the sample. A description of this method and of
the necessary electronic apparatus has been given
previously' and is not included here.

The hydraulic pressure equipment was of conven-
tional design, but since the sample cell was fabricated
from 4340 steel it was not considered safe to generate
high pressure in it below 250°K. The temperature of this
cell could be controlled to within #40.05° by a large
thermostat bath. FFurther details of this pressure equip-
ment and a description of the regulated temperature
bath used for measurements at 1 atm are available
elsewhere.!?

The single crystals used in these experiments were
grown by a modified Holden process.'® To obtain a
saturated solution at ~45°C, 1200 g of ammonium
bromide (analytical reagent grade) and 600 g of urea
were added to one liter of distilled water. This large
amount of urea was necessary as a habit modifier to
prevent dendritic growth and to promote the growth
of large cubic crystals with (100) faces. All of the single
crystals obtained were pale yellow in color and had
some imperfections. Iortunately, these imperfections
were either near an edge or near the center of a single
face and the transducer could always be located so that
they would not lie in the path of the acoustic wave.

14 H, J. McSkimin, J. Acoust. Soc. Am. 33, 12 (1961).

15 H, J. McSkimin and P. Andreatch, J. Acoust. Soc. Am. 34,
609 (1962); 37, 864 (1965).

16 A\, N. Holden, Discussions Faraday Soc. 5, 312 (1949).
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An analysis of the bromide-ion content indicated that
these crystals were at least 99.9%, NHBr. Three differ-
ent crystals of ammonium bromide were used to obtain
the present data. For Crystals I and I1, a pair of natural
(100) faces were used without any mechanical cutting
or polishing, The lengths (Ly) in the [100] direction
as measured by a lightwave micrometer at 20°C were
1.09054:0.0005 c¢m for Crystal I and 1.19354-0.0005
for Crystal IL. The third crystal (III) was fly cut to
give a pair of parallel (110) faces, and the length Ly
in the [110] direction was 0.5641=£0.0007 cm at 20°C.
As a result of handling, exposure to the atmosphere,
and seal changes, the path lengths in all these crystals
decreased slowly with time. Periodic length measure-
ments were made and corrections were applied to
eliminate any small systematic changes in the elastic
constants due to path length changes.

A density py of 2.4336 g cm™ was calculated from
a lattice constant of 4.0580 A at 20°C; this unit cell
constant is based on several different x-ray investiga-
tions around room temperature.”' The elastic constants
at 1 atm were obtained as a function of temperature
from equations of the type

C=pU= (Lun/Lr) pn(2Ln)*/ &, (5)
where U is the appropriate velocity, 4 is the true round-
trip transit time associated with the sound wave, and
Ly is the sample length at 1 atm and temperature T,
The quantity (Ly/Lr) was calculated from the poly-
crystalline thermal-expansion data of Simon and
Bergmann® and from the low-temperature x-ray data
of Hovi, Heiskanen, and Varteva.” Obviously, the
x-ray measurements give the tetragonal cell dimensions
(@37 a,=a,) below 7. On the assumption that a large
cubic single crystal is transformed into small domains
with the tetragonal axes of these domains lying at
random along any one of the original [1007] directions,
we have taken Ly to be the cube root of the volume
below 7'. The two sets of data are in very good agree-
ment except in the region 230°-235°K, where the x-ray
data indicate an almost discontinuous change in Ly
with temperature. The rapid but continuous variation
obtained from Simon and Bergmann’s data was used
in this region. However, this choice has a negligible
effect (0.059%,) on the values of the elastic constants
at 1 atm.

To calculate the elastic constants as a function of
pressure, it is convenient!® to introduce another path-
length ratio s(p) = L1/ L,, where L, is the sample length
ata given temperature and 1 atm and L, is the length at
the same temperature under an external applied pres-
sure p. The elastic constants at a given temperature can

17V, T. Deshpande and D. B. Sirdesmukh, Acta Cryst. 14,
353 (1961); V. C. Anselmo and N. O. Smith, J. Phys. Chem. 63,
1344 (1959).

1 R. K. Cook, J. Acoust. Soc. Am. 29, 445 (1957).
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then be obtained as a function of pressure from equa-
tions of the type

C(p)=C(1 atm) (8,/3,)*s(p), (6)

where 8, and 6, are the transit times corresponding to
I atm and to a pressure p. In general, the calculation of
s(p) requires a knowledge of the isothermal compress-
ibility as a function of pressure. However, an excellent
approximation to s(p) can be calculated directly from
our present adiabatic velocity data'® since the difference
between the isothermal and adiabatic compressibilities
is very small except in the immediate vicinity of the
lambda point. [At 300°K and 1 atm, (B37—p%)/85 is
only 0.007.] Since s(p) values vary only between 1.00
and 1.02 for the pressure range 0 to 12 kbar, small
uncertainties in the s(p) variation do not cause sig-
nificant errors in the elastic constant values (which
depend mostly on 6,/6,).
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F1c. 3. Variation of ¢;; with temperatuie. Open circles represent
data at 1 atm; for a definition of the symbols used for values
at various constant volumes, sce the legend of I'ig. 5.

For measurements made at 1 atm, the quartz trans-
ducers were cemented to the sample with Dow resin
276-V9 as the seal material for all runs between 215°
and 320°K. Below 215°K, these seals broke and Nonaq
stopcock grease was used in a few runs despite the fact
that it seemed to dissolve the sample slowly. Since the
Dow resin was soluble in the hydraulic pressure fluid,
it was necessary to find a new seal material for the
high-pressure work. A polymer of phthalic anhydride
and glycerin was found suitable®® and was used for
all the pressure runs.

The Dow resin and Nonaq seals were all very thin.
Thus the phase shifts v were small (between —35° and
—8° at all temperatures, and the corrections to the
transit times'®> due to phase shifts amounted to only
0.01% at 1 atm. Since all high-pressure measurements
were carried out at a frequency equal to the resonance
frequency of the transducer at 1 atm, there were
appreciable changes in the phase shifts v as a function
of pressure. This effect of pressure on the behavior of
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F16. 4. Variation of C’ with temperature. Open circles represent
data at 1 atm; for a definition of the symbols used for values at
various constant volumes, see the legend of I'ig. 5.

the transducers is known" and was corrected for. The
effect of pressure on the seal is not known and has been
neglected.

RESULTS
Constant-Pressure Data

The open-circle points shown in Figs. 3-5 are experi-
mental data points for the elastic constants ¢y, ¢4, and
C’ as functions of temperature at 1 atm. Smooth-curve
values of these directly measured quantities are pre-
sented in Table I together with the adiabatic bulk
modulus 1/3%, which can be calculated from

1/ﬁS=cu—4C'/3. (7)

Since the temperatures in Table T are all above the
lambda point, all entries pertain to the disordered cubic

phase of NH4Br.
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I16. 5. Variation of ¢44 with temperature. Open circles represent
data at 1atm. Valuesat various constant volumes are distinguished
by the symbols: X+« Vs (a;2=4.040 A); 7+« - Vig (a13=4.0425
.7\), ALK [-14 (All4=4.045 ‘K); D L "1;, (a,5=4.0476 1‘&), .' 3 "ls
(016=4.0496 R); 4+ -+ 117 (@1;=4.0517 &).
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TasLE I. Smooth-curve values at one atmosphere of the
adiabatic elastic constants ¢, ¢4, and C’ and calculated values of
1/8S for NH,Br in the cubic disordered phase, all in units of 101
dyn cm™2,

1/8%

T(°K) 1 Cyy c’

235 S 0.7992 1.3110 cee
236 oo 0.7987 1.3171 oee
237 3.2640 0.7977 1.3205 1.5033
238 3.2860 0.7968 1.3231 1.5219
240 3.3190 0.7948 1.3260 1.5510
245 3.3694 0.7897 1.3292 1.5971
250 3.3942 0.7842 1.3300 1.6209
200 3.4205 0.7726 1.3289 1.6486
270 3.4293 0.7605 1.3264 1.6608
280 3.4293 0.7478 1.3232 1.6650
290 3.4230 0.7349 1.3197 1.6640
300 3.4144 0.7218 1.3160 1.6597
310 3.4028 0.7083 1.3122 1.6532
320 3.3885 0.6944 1.3083 1.6441

As the temperature was lowered toward the transition
temperature, an increase in attenuation was observed.
For longitudinal waves in the [100] and [110] direction
and for the transverse wave which yields €, the attenu-
ation increased rapidly at the transition temperature
and the echoes completely disappeared. As the tem-
perature was lowered below 210°K, echoes slowly began
to reappear. The shape of these echoes was very poor,
and there was still a great deul of attenuation. Thus it
was not possible to make meaningful velocity measure-
ments for ¢; and C’ below the transition.

For the transverse waves associated with ¢y there
was only slight attenuation in the critical region, and
data could be obtained over the entire temperature
range 100°-320°K including the immediate vicinity of
Tx. Values of ¢y were determined between 215° and
235°K on all three crystals (using both [100] and [110]
propagation directions) and good agreement was ob-
tained. This lends support to the idea that there are
small domains with their tetragonal axes randomly
oriented along the x, y, or 3 axes of the original cubic
crystal. In that case, the measured pU,? values below
the transition point correspond to an average shear

TasLe II. Smooth-curve values of the adiabatic quantity
pU#=¢4 for NHBr in the tetragonal (ordered) phase at 1 atm,
in units of 10" dyn cm™2,

T(°K) Caa T(°K) Cas
110 0.7713 205 0.7273
120 0.7639 210 0.7297
130 0.7567 215 0.7331
140 0.7496 220 0.7386
150 0.7427 225 0.7481
160 0.7364 230 0.7627
170 0.7307 231 0.7680
180 0.7265 232 0.7725
190 0.7244 233 ~0.778
200 0.7258 234 ~0.79

AND C. F.
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constant ¢, which is related to the single-crystal
tetragonal constants by Gu=1%(2cu+-ce). Values of
pU#=¢y obtained from measurements along a [100]

|
:
!
§
é

direction (in the original cubic crystal) are given in

Table IT and shown in I'ig. 4. .
Although it is not shown in Fig. 4, hysteresis was
observed in the temperature behavior of ¢y, On cooling
the sample a sharp drop in ¢y occurred at 234.2°K,
whereas the most rapid jump in the ¢y value cn warming
the sample occurred at 234.8°K. This temperature
hysteresis of 0.6°K is quite comparable to the hysteresis
of 0.9°K observed for both ¢4 and €’ in ammonium
chloride. .

The greatest sources of error in these elastic constants
at 1 atm are due to uncertainties in the path lengths
at 20°C (#£0.1%) and ambiguities in the choice f
the 2=0 condition® for shear waves (especially for cy),
Therefore, to check the possibility that a wrong n=0
value had been chosen and also to check the internal
consistency of our data, the velocity of the longitudinal

Tasre T1I. The adabatic elastic constants and bulk modulus of
ammonium bromide single crystals at room temperature obtained
from the present mcasurements (1) compared with the results
obtained by Haussuhl (H) and by Sundara Roa and Balakrishnan
(Sand B); the bulk modulus of polycrystalline ammonium bromile
obtained by Bridgman (B) is included. All values are given in units
of 10" dyn cm~2

Obs. T(OI\') Ci1 Cy4 c’ C12 1/8%
P 300 3.414 0.722 1.316 0.782 1.66
H 293 3.38 0.685 1.24 0.91 1.713
Sand B 208  2.96 0.53 1.19 0.59 1.38
B 208 ... ‘i

1.63

wave in the [1107] direction was measured as a function
of temperature. The experimental value of pUyp? for
this wave and that calculated from Eq. (4) using the
tabulated values of ¢y, ¢y, and C’ were within 0.1
percent of each other over the entire temperature
range 250°-300°K. This eliminates the possibility of a
systematic error in the choice of the 2=0 value for ',
I'or ¢y there is still a possibility that the reported values
may be systematically in error by 420.9%,. A propaga-
tion-of-errors treatment indicates that the random
error in all three elastic constants is about 4-0.29, at
all temperatures.

The independent adiabatic elastic constants of single-
crystal ammonium bromide at room temperature have
been measured by Sundara Roa and Balakrishnan®
and by Haussuhl,* who also measured the temperature
dependence down to the transition. Table IIT gives a
comparison of the elastic constants and the bulk
modulus obtained by these investigators with the results

WR, V. G. Sundara Rao and T. S. Balakrishnan, Proc. Ind.
Acad. Sci. 28A, 480 (1948).
20 S, Haussuhl, Acta Cryst. 13, 685 (1960).
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ELASTIC CONSTANTS
of the present experiments. Also included is the adiabatic
bulk modulus of a polycrystalline sample calculated
from Bridgman’s isothermal value.* The large difference
between the present results and those of Sundara Roa
and Balakrishnan should not be taken too seriously
since the latter were reported to be accurate only to
within 109. The agreement with Haussuhl's elustic
constants is not very good, although the slopes of his
elastic constants versus temperature agree quite well
with those of the present measurements.

Constant-Temperature Data

The experimental values of ¢y, s, and C” as functions
of pressure at various constant temperatures are shown

4.40(-

/|
4.30(- "
4.20 -

o [
4,10 /k/‘/

4.00—

3901
A 255°K
e 275
A 295
o 315

¢, (UNITS OF 10" DYNES CM®)

| | 1 J
6000 10000
(BARS)

2000
PRESSURE

I'16 6. Dependence of ¢y on pressure at various temperatures.

in Figs. 6-8. Data on the shear constants were obtained
with 20-Mc/sec transducers, but these showed a bad
tendency to break after several high-pressure runs.
Measurements of ¢;; were made at 30 Mc/sec by using
a 10-Mc/sce transducer, and this did not break on
repeated runs at various temperatures. A tabulation
of the smooth-curve values of these elastic constants
as a function of pressure is given in Table IV, The limits
of error in these clastic constant values at high pressures
is somewhat greater than that at 1 atm due to greater
uncertainty in the phase-shift correction term. (There
is an appreciable increase in y with an increase in the
pressure.)

2 PV, Bridgman, Phys. Rev. 38, 182 (1931).
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Bridgman?! has measured AV/V, as a function of
pressure for ammonium bromide at 0° and 75°C. A
comparison of his values with the values calculated
from our present data shows that his values are about
6% high. Bridgman’s difference between AV/ V), for a
uiven pressure interval at the two temperatures is about
3 to 4 times greater than that observed in these experi-
ments. The explanation for this difference seems to be
that Bridgman’s data were taken on a pressed poly-
crystalline sample, which one would expect to be more
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TasrLE IV. Smooth-curve values of the effective adiabatic
elastic constants ¢y, ¢4, and C’, in units of 10" dyn cm™, as a
function of pressure at various temperatures. Calculated values of
1/B85 are also given at two temperatures.

AND C. F.

T=315°K
p(kbar) cn p(kbar) i p(kbar) cn
0 3.396 4 3.757 8 4.063
2 3.583 6 3.914 10 4.205
T=295°K
p(kbar) cn Cqq ¢! 1/88
0 3.419 0.792 1.318 1.662
2 3.615 0.805 1.343 1.824
4 3.789 0.879 1.363 1.972
6 3.949 0.951 1.3815 2.107
8 4.097 1.020 1.398 2.233
10 4.236 1.091 1.4145 2.350
T=2I5°K
. p(kbar) 1 cu p(kbar) i Cis
0 3.430 0.754 6 3.978 0.975
2 3.639 0.830 8 4.129 1.046
4 3.819 0.903 10 4,272 1.114
T=255°K
p(kbar) tn Cu (o4 1/8%
0 3. 411 0.778 1.330 1.638
2 3.654 0.856 1.358 1.843
-4 3 843 0.931 1.379 2.004
6 4010 1.003 1.397 2.147
8 4.162 1.073 1.4135 2.277
10 4.302 1.140 1.4285 2.397

compressible than a single crystal. Indeed, the same
kind of discrepancy between single crystal and Bridg-
man’s polycrystalline value is also observed in ammo-
nium chloride.'

Constant-Volume Data

In the temperature region above the lambda point,
it is possible to combine the results presented above to
obtain the variation of the elastic constants with tem-
perature at constant volume. From the known tem-
perature dependence of the cubic cell parameter at
1 atm and the pressure dependence of s(p), one can
compute the hydrostatic pressure which must be applied
to the crystal at any given temperature in order to
maintain its volume at a constant value. This has been
done for the 17 different values of the volume: V;
corresponds to a unit cell dimension of a;=3.985 A;
Vs, through Vi, correspond to e values which are each
0.005 A greater than the previous value (up to ap=
4.040 A); V5 through Vy; correspond to ay13=4.0425,
ay3=4.045, a,5=4.0476, a15=4.0496, and a,;=4.0517 A.
The corresponding p-7" isochores are plotted in Tig. 2.
With these isochores, one can easily evaluate the effec-
tive adiabatic elastic constants at constant volume.
Such constants have been plotted in Figs. 3-5 for a
few high-volume values as a comparison with the varia-
tion at constant pressure. Constant-volume elastic con-

YARNELL

stants are shown in Iig. 9 as a function of temperature
for all 17 values of V.

DISCUSSION
Far from the Lambda Transition

As shown in Fig. 2, the principal region of this inves.
tigation is the disordered B phase of ammmonium bromide,
At pressures up to about 3000 bar the elastic constants
show a nonlinear variation with pressure due to the
fact that the crystal is still in the vicinity of the -
lambda line. At higher pressures, farther from the
lambda line, the variation is linear as expected for a
normal solid having no transition. This is clearly
illustrated by the temperature variation of the constant-
volume elastic constants shown in I'ig. 9. Presented in
Table V is a comparison of our data on ammonium
bromide with recent data on ammonium chloride!; these
results are discussed below in the general context of the
behavior which is known for alkali halide crystals. The
NH,ClI elastic constants have been measured in a region
of the phase diagram which contains the lambda line®;
therefore the behavior of these constants will be some-
what influenced by the proximity of the order—disorder
transition. On the other hand, NH,Br should be typical
of a “normal” CsCl-type crystal (at least above
3000 bar).

Haussuhl®** has found that all alkali halides of the
NaCl type obey the inequality 77 < 71, < Ty, where Ty

represents (9 In¢;;/07"), at atmospheric pressure and

is a negative quantity. For several alkali halides of the
CsCl type the inequality has been found® to be

Tu<Tn<T'. (8)

As shown in Table V, the slopes at 320°K of the elastic
constants of ammonium bromide obey this CsCl in-

- r s
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- — 145 D = =
= e -
o 4.0 iy
- e e .
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C“ 44
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I16. 9. Adiabatic elastic constants versus temperature at
various constant volumes from V) to V7 (see text). The highest
curves correspond to V.

22 S, Haussuhl, Z. Physik 159, 223 (1960).
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Tapre V. The adiabatic elastic constants of ammonium bromide and their temperature and pressure derivatives compared with the
results of Garland and Renard (Ref. 12) for ammonium chloride. The value of d Incy,/aT at 350°K was measured by Weintraub (Ref.
23); the other 9 Inc/AT values were determined at 320°K. The elastic constants are in units of 10" dyn cm™2; the temperature de-

rivatives are in units of 107* deg™!, and the pressure derivatives are in units of 1072 cm? dyn™L.

NH,CI NH,Br
o WUC’ Cu on ¢’ ) Cu
¢(295°K) 3.814 1.466 0.8753 3.419 1.318 0.7285
(0Ine/aT) po —1.5 —-2.83 —-17.1 —4.32 —=2.93 —-19.8
—5.3(350°K)
(dlne/0T) v 4.0 —0.78 —2.66 3.60 —0.05 —5.86 -
(0lnc/0p) 2o’k 4.63 0.81 5.12 317 1.03 5.30

equality. At 320°K the slope of ¢ for ammonium
chloride does not seem to fit the pattern; however, if
one assumes that ¢;p hasn’t reached itslimiting “normal”
hehavior (i.e., that it is still being influenced by the
nearby lambda transition), the slopes for the elastic
constants would obey the inequality. Indeed, the un-
published results of Weintraub® on the variation of ¢y
with temperature between 300° and 375°K indicate
that ¢;y becomes linear with respect to 7" only above
35°K, where T1=-—5.27X10"* deg~'. This value
would satisfy the CsCl inequalily very well.

The pressure derivatives of the elastic constants,
= (9 Incy;/0p)r, will obey similar inequalities. Data
s a function of pressure are available for several
alkali halides of the NaCl type* for which the in-
equality is P'> Py > Py This is reasonable since a
decrease in temperature corresponds to an increase
in pressure in terms of its effect on the molar volume
(and thus the elastic constants). Although no data
appear to be available on the pressure dependence
of the elastic constants of alkali halides of the CsCl

" type, the expected inequality would be

%)

Both the ammonium bromide and chloride data obey
this inequality over the entire range of temperatures
for which pressure measurements have been made; the
values of P;; at 295°K, as given in Table V, are typical.

At constant voluwme the inequalities for the tempera-
ture derivatives of the alkali halides of the NaCl
type which have been studied is 77 < Ty < T’ (constant
volume). For the ammonium halides at constant volume
the corresponding inequality is

Py> Py> P

Tu<T'<Th (constant volume). (10)

This comparison of the behavior of the ammonium
halides with that of NaCl-type alkali halides imnic

2 A. Weintraub, senior thesis, MIT, 1963.
# D, Lazarus, Phys. Rev. 76, 545 (1949); R. A. Miller and C.
§. Smith, J. Phys. Chem. Solids 25, 1279 (1964).

diately reveals a significant difference: the slope of ¢i
versus temperature at constant volume for ammonium
bromide and chloride is positive while it is always nega-
tive for the NuCl-type salts.* This behavior cannot be
due to an influence of the lambda transition since for
NH,Br at the lowest volumes (far from the transition)
anomalous temperature variations in ¢y are absent-and
cn varies linearly with temperature (as a normal crystal
should).

Comparison of the elastic constant values in Table V
shows that those of ammonium chloride are greater
than the corresponding ones for the bromide. This is in
general what is observed for all of the alkali halides.
As the molar volume (and mass) increases, the stifiness
(and thus the elastic constants) decreases. The tem-
perature and pressure derivatives of the elastic constants
of ammonium bromide are very similar to those of
ammonium chloride, although the pattern is not regular
enough to permit scaling. If these derivatives are taken
as measures of the anharmonicity of the crystal, then
ammonium chloride and ammonium bromide have
quite similar anharmonicity.

Near the Lambda Transition

Our_information concerning th transition is
limited to data obtained at 1 atm, especially on ce
for which measurements could be made below the
lambda point. a o
" As the temperature is lowered, csy for ammonium
bromide increases linearly with temperature down to
the lambda point where it abruptly decreases and then
at a lower temperature (about 40°K below the lambda
point) resumes its normal increase with decreasing
temperature (see Iig. 5). The temperature behavior of
a4 for ammonium bromide is qualitatively compatible
with that for ammonium chloride where there is an
anomalous increase in cy. This is expected since cy is
a sensitive function of the volume, and ammonium
chloride contracts on ordering while ammonium bromide
expands. A quantitative analysis of the effect of ordering
at constant unit-cell dimension is complicated by the
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tetragonal distortion of the lattice and the displacements
of the bromide ions which occur in the y phase on
ordering. Nor is the Ising model theory® applied to the
NH,CI data valid in the case of the f—y transition in
NH,Br.

The behavior of ¢y just above the lambda point in
ammonium bromide is very similar to that observed
in ammonium chloride, whereas the behavior of C’ is
different in the two cases. Unlike the data for the
chloride, C’ values for the bromide show a marked
anomalous decrease which is apparent as much as 15°K
above the lambda point (see Tig. 4). Attenuation of
the ultrasonic waves associated with both ¢, and C’

2% R. Renard and C. W. Garland, J. Chem. Phys. 44, 1125
(1966).
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was very high over a considerable range of temperatures
below the lambda point. This is presumably due to the
presence of domains consisting of tetragonal crystallites
with their unique axes lying at random along one of
the three original cubic axes. The presence of domains is
common in antiferromagnetic - crystals and +y-phase
ammonium bromide is analogous to an antiferromagnet,

A more extended discussion of the properties of the
ordered phase and of the lambda transition region is
difficult and inappropriate at this time. New experi-
mental work is now in progress on ammonium bromide
in the region 100° to 250°K and 0 to 6 kbar. This will
provide information on both the 4 and & phases, as
well as new data in the regions of the various transition
lines.
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The mechanical behavior of a system near a cooperative order—disorder transition point is discussed
in terms of an Tsing model for a set of spins located on mass particles which form a compressible lattice.
With the assumption of weak coupling between the lattice and spin systems, it is shown that this Tsing
model is unstable in the immediate vicinity of its critical point and undergoes a first-order transition.
In addition, many properties should show hysteresis in the critical region. These general conclusions are

illustrated by several two-dimensional examples.

INTRODUCTION

T is a well known but striking fact that substances
which undergo cooperative order—disorder transi-
tions usually exhibit anomalous variations in volume
which extend over the same temperature range as the
lambda spikes in the specific heat. A large amount of
theoretical work has been carried out on the thermal
properties of such cooperative systems, but little at-
tention has been paid to the mechanical aspects of the
problem. Indeed, in most statistical theories the volume
of the system is held fixed and it is assumed that
experiments could be carried out directly at constant
volume. Since it is the pressure rather than the volume
which is usually subject to experimental control, the
mechanical behavior of a system near a lambda transi-
tion point may be of considerable importance.
Our treatment is based on an Ising model for a
system of spins located on mass particles which form
* This work was supported in part by the Advanced Research
Projects Agency.

t Present address: Centre de Recherches, Isso Standard SAF,
Mont St. Aignan (Seine Maritime), France.

a compressible lattice. Due to its simplicity, the Ising
model is fairly tractable and a great deal has already
been done for the fixed-volume case, including an exact
solution of the two-dimensional problem by Onsager.!
In this paper (I), the model is defined and the charac-
ter of the transition very close to the critical point
is investigated. General conclusions about the in-
stability of the system (and a resulting hysteresis)
are illustrated by several explicit, two-dimensional ex-
amples. In the following paper (II), the model is
generalized in terms of stress—strain variables for
the two-dimensional case, and the contributions to the
elastic constants due to spin ordering is derived in
analytic form. Both of these theoretical develop-
ments were inspired by recent ultrasonic measurements
on ammonium chloride near its lambda transition; and
that system, which is analogous to a simple-cubic ferro-
magnet, provides several excellent confirmations of our
predictions. The experimental results on NH,Cl and
their interpretation are given in Paper ITI.

1L. Onsager, Phys. Rev. 65, 117 (1944).
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ORDER-DISORDER PHENOMENA. I

The possibility of an instability for a compressible
lattice near an order—disorder lambda point was first
pointed out by Rice,*> who presented a very general
thermodynamic discussion of the problem. A few years
later, Domb?® gave a brief demonstration of the in-
stability of a compressible Tsing model, but then the
problem appears to have languished for some time.
More recently, Bean and Rodbell* have demonstrated
that magnetic ordering can lead to a first-order transi-
tion in the critical region. They based their discussion
on the molecular-field theory of ferromagnetism and
presented data on MnAs as experimental evidence for
their conclusions. Mattis and Schultz® have arrived at
essentially identical conclusions in their theory of mag-
netothermomechanics. It is shown here on the basis of
a very simple model that an Ising lattice is unstable in
the immediate vicinity of its critical point and under-
goes a first-order transition with hysteresis. This is
proved for a two-dimensional square lattice of ferro-
magnetic particles in the absence of an external field.
Very general conditions are given for observing this
effect in a three-dimensional case.

FORMULATION OF THE MODEL

Let us first consider the usual Ising lattice® consisting
of an array of N fixed sites. Associated with each site
are two possible spin orientations—“‘spin up” and
“spin down”. For zero external magnetic field, it is
customary to write the energy of a given spin con-
figuration as

L= _J(q;u'—Qa) +’Y]VK/2: (1)

where g, is the number of nearest-neighbor pairs in
the lattice with parallel spins, ¢, is the number with
antiparallel spins, y/V/2 is the total number of nearest
neighbors (y=4 for two-dimensional square lattice,
v=6 for three-dimensional sc lattice, etc.), and J and
K are defined by

J=(UG_UD)/2; K=(UG+UP)/2 (2)

In the above, U, is the potential energy due to spin
interaction between a nearest-neighbor pair of parallel
spins and U, is the interaction energy for a pair of
antiparallel spins. The case J>0 corresponds to ferro-
magnetism. For simplicity, the model is given only for
the case of isotropic spin interactions. Thus, the spin
partition function is Q,=Q(0, H) exp(—yNK/2kT),
where Q7 (0, H) is the well-known Ising partition func-
tion at zero field as a function of H= J/kT.

Instead of being concerned with the thermal behavior
of a “clamped” system of spins only, we wish to con-

20. K. Rice, J. Chem. Phys. 22, 1535 (1954).

!C. Domb, J. Chem. Phys. 25, 783 (1936).

¢C. P. Bean and R. S. Rodbell, Phys. Rev. 126, 104 (1962).

¢ D. C. Mattis and T. D. Schultz, Phys. Rev. 129, 175 (1963).

® K. Huang, Statistical Mechanics (John Wiley & Sons, Inc.
New York, 1963), Chaps. 16 and 17; H. S. Greene and . A,
Hurst, Order—Disorder Phenomena (Interscience Publishers, Inc.,
New York, 1964), Chaps. 2, 3, and 6.

1121

sider the mechanical behavior of a more realistic model
in which the localized spins are associated with mass
particles (atoms, ions or molecules) which form a com-
pressible lattice. Tndeed, an ‘“unclamped” array of
spins only is usually unstable and it is the interaction
between mass particles which stabilizes the composite
system. We assume weak coupling between the lattice
and spin systems; i.e., we assume that Q=0Q,0:, where
Qq is the partition function of the particle lattice. This
is the crucial feature of our model. Almost all theories
of order-disorder phenomena are based on the implicit
hypothesis that a configurational partition function
can be written without taking into account strong
coupling between the spins and the rest of the system.”
It is possible to check on thisweak-coupling assumption
for regions far away from the critical point since many
properties (e.g., heat capacity, thermal expansion,
elastic constants) then depend essentially on the lattice
contribution. If the coupling is weak, these properties
should have comparable temperature and pressure de-
pendences in the completely ordered and completely
disordered state, assuming that these two states belong
to the same crystallographic group. It is, however,
possible to imagine that the coupling will be strong
only in the critical region. Since there is no theoretical
evidence that this must be true in general, we have
made the simpler assumption and present below the
consequences of weak coupling in an Ising model.

It proves convenient to rewrite the over-all partition
function of the system in a new form

Q=0.0:=Qr exp(—yNK/2kT)01=Q:10a, (3)

where Qg, the partition function for the disordered
lattice, includes both the usual lattice contribution of a
normal crystal and the interactions between randomly-
oriented spins. As a result of Eq. (3) all the thermo-
dynamic functions can be written as a“sum of two
independent contributions; in particular for the Helm-
holtz free energy, A=A;+Ay=—kT InQr—k7T InQu.
The contribution to the properties of the system which
arise from the Qu term can be deduced empirically
from experiments performed on crystals considerably
above their lambda points. WeTemphasize here the
contribution to various properties due to the Q; term
which describes the spin ordering. The expressions for
the configurational internal energy and specific heat
at constant volume are well known® and can be writ-

ten as
Ur=—Jd InQ;/dH, (4)
Cr=kH?d* InQ;/dH?, (5)

since Qy is a function only of H=J/kT and J is not
a function of temperature. The quantity J will,” how-
ever, be a function of the spacing between lattice sites.

7 Some work has been done on the coupling between ordering
and vibrational motions for a one-dimensional binary alloy;
A. A, Maradudin, E. W. Montroll, and G. H. Weiss, Solid State
Phys. Suppl. 3., pp. 188-212 (1963).
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Thus, we can define a spin (or Ising) pressure by

pr=—1(0A41/dV)r; this contribution to the total pres-

sure is directly related to the Ising energy Uy by

01n(),> a7 (:Hn(),) dJ U dJ
aJ JpdV \ dll ]dvV

=#1( L ®
f) NJ dv
where v= 1V /N is the volume per lattice site. Note that
Ur has a negative value in the ordered phase and goes
to zero as the spins disorder.

INSTABILITY AND HYSTERESIS

At a given temperature 7" a system is stable, at least
locally, if the Helmholtz free energy satisfies the con-
dition (824 /9V*)>0. For the model considered above,
this stability condition requires that

= (r')pd,/ar)T— (a/)[/(')’ll)rz 0,
where (dpr/dv)p is found from LEq. (6) to be

(0pr/dv)p= (T/N J?*)Cr(dJ/dv)*— (U/NJ) (d*J /dv").

(8)
Since (dpar/dv)r is related to Ba”, the isothermal com-
pressibility of the disordered lattice, by

(7)

1/Ba"=—2v(dpar/dv)r (9)
one can write the stability condition as
1 T dJ\* oUg/d*T

st e[ v | o e B, (10)
BaT NJ?* "\dv N J\d»?

Now 1/8," will in general have a finite positive value
which is a slowly varying function of temperature, while
J and its derivatives with respect to » will be finite
non-zero quantities which are independent of tempera-
ture. The Ising internal energy will also be finite at all
temperatures; but the configurational heat capacity at
constant volume, Cy, is known to approach very large
values in the vicinity of the eritical point. The behavior
of Cris the crucial factor. If C'r approaches -+ o at
the critical temperature, there must be an instability
near that point unless the particle lattice is completely
incompressible (in which case, 1/84"= -+ ). This re-
sult depends only on our assumption of weak coupling
in the model.

IFor the two-dimensional Ising model an exact ana-
Iytical expression for Qr (and thus Cy) is available,!
and Cr is known to have a logarithmic singularity at
T, Equations (6)-(10) are still valid in two dimen-
sions if » is replaced by ¢, the surface area per lattice
site, and p is understood to be a surface pressure
defined by —[d4/3d(Na) Jp. In this case, the instability
of a compressible lattice in the immediate vicinity of
its critical point follows directly from Eq. (10). This
instability will cause the system to undergo a spon-
taneous first-order phase transition across the unstable
region. Associated with this first-order transition is
the possibility of hysteresis. To illustrate these conclu-

C. W. GARLAND AND R. RENARD

sions we discuss below several different aspects of the
behavior of a two-dimensional model. In this case,
Eq. (6) allows us to easily calculate the Ising pressure
pr from the known expression! for Uy if J and d.J/de
are specified. For a ferromagnet, J is simply related
to the critical temperature (J=0.44069 k7.) and it
is physically reasonable to expect that dJ/de<0. Let
us represent J by the form «/o", (where n is a small
integer) as an illustrative example. A typical disordered-
lattice pressure will be represented over a small range
of o by

par=aytaT—bo, (11)

where ag, a1, and b are positive constants.

Constant External Pressure

For a system at equilibrium under an external ap-
plied pressure, it is necessary that pexy=pau-t+pr. We
treat the simplest case of zero external pressure, for
which p;y=— pau. Figure 1 shows a plot of p; and —py
against o at several temperatures 77 < Ty<+++Ts< T},
An intersection of the two appropriate isotherms will
give the-cquilibrium area o under zero external pressure
if the stability condition (7) is satisfied (that is, if
the slope of —pa is greater than that of pr). Now
consider the change in ¢ with 7" for pe=0. As the
temperature increases from 7% to 7%, ¢ can increase
continuously from ¢y to o5 (Points 1 to 5 on Iig. 1),
but as 7—7 from below the system becomes unstable
(0*°4/80*=0) at Point 5 and there must be a first:
order change in area from o5 to 5’. On further heating .
o increases continuously from o3’ to o7. However, on
cooling from 7% to 7% the arca can decrease smoothly
from o7 to oy/. As T—7T; from above the instability
occurs at Point 3’ and there is a first-order change
from o3’ to o Below 7%, o decreases smoothly on
cooling. Thus, there can be a hysteresis loop near the
critical point with a first-order jump in o at 7% on
heating and a first-order drop in o at 7% on cooling;
this is shown schematically in an inset on I'ig. 1. The |
values 73 and 7% determine the maximum width of this
loop since the system becomes mechanically unstable
at Points 5 and 3’. Actually, there is a temperature T}
for which the free energy at Point 4 equals that at
Point 4’; complete thermodynamic equilibrium would
give a first-order transition at 7% and no hysteresis, |
The region between 4 and 5 on heating or 4’ and 3’ on |
cooling is only metastable. It is easy to show that a |
Maxwell equal-area rule is valid for determining 7 in |
this system. !

The lower inset on Fig. 1 presents a schematic sketch |
of the temperature dependence of 1/87 in the critical
region. On warming, as 7% is approached from below,
1/B7 approaches zero and then jumps to the value B
after the first-order transition occurs. On cooling, as
75 is approached from above, 1/87 vanishes and jumps |
to the value A after the transition. If the system is in
complete thermodynamic equilibrium, 1/8” never van-
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Ty The family of straight lines—pa1 were
drawn to represent a disordered lattice
with typical compressibility and thermal
expansion coefficients. The encircled num-
bers 1 and 7 indicate the spin and lattice
isotherms at 7% and 7'7. The insets repre-
sent schematically the temperature de-
pendences of the area ¢ and of the recip-
rocal isothermal compressibility 1/87.
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ishes but has a singular point at 7%. If the transition
occurs in the metastable region but before the mechan-
ical instability point is reached; 1/87 will show hystere-
sis and discontinuities but does not vanish.

If an actual crystal behaves like this model, it is
impossible to bring it arbitrarily close to a lambda
point: @ first-order transition occurs before the tem-
perature reaches the theoretical critical temperature.
Indeed, unless great care is taken to achieve true
thermodynamic equilibrium, there are a range of tem-
peratures (such as 7% to 7% in Iig. 1), where the
properties depend on the history of the sample.

Constant Temperature

Let us look at the variation of area ¢ as a function
of the applicd pressure pexi. Iigure 2 shows, at a given
temperature, the Ising pressure and the negative of the
disordered-lattice pressure as functions of o. At zero
external pressure, the equilibrium point is at A, which
corresponds to a largely disordered system. As the
external pressure is increased, the ordering of the sys-
tem increases and the area o decreases smoothly until
the pressure reaches a value equal to BB’ at which
mechanical instability occurs. The system spontane-
ously contracts to an area o¢ corresponding to Point C,
which is the new equilibrium state under this external
pressure of magnitude py=CC’'=BB'. A further in-
crease in the external pressure causes a smooth decrease
of the area and completes the ordering. If the pressure
is now reduced, the system is mechanically stable until
the area reaches the value op>oc. At D the system is
mechanically unstable and spontaneously expands to
the value opg, the new equilibrium area under this
pressure of magnitude py= E/'=DD'. Again the pos-
sibility of hysteresis is predicted in a region which
corresponds  to metastable (or local) equilibrium. If

the system were in complete thermodynamic equilib-
rium a first-order transition without hysteresis would
take place at pressure pa.

Constant Area

If the area is maintained constant by an applied pres-
sure and not by rigid clamping, Inequality (10) is still
valid. Thercfore on each curve pr(7") for a given area,
there is a forbidden zone in which the intersection of
the isochores — pu(7') and pr(7') does not correspond
to a stable state. On Fig. 3 are plotted several Ising iso-
chores corresponding to areas o;<o:<+++06<o7. The
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I'16. 2. Behavior of a two-dimensional Ising mode] as a function
of pressure at constant temperature. The insets represent sche-
matically the pressure dependence of the area ¢ and of the recipro-
cal isothermal compressibility 1/87.
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F16. 3. Behavior of a two-dimensional Ising model at constant
volume, The family of curves pr were calculated at seven evenly
spaced areas from a; to o4. The lines— pai were drawn to represent
a disordered lattice with typical compressibility and thermal
expansion coefficients. The encircled numbers indicate the spin
and lattice isochores at the given areas. The inset represents
schematically the temperature dependence of the reciprocal
isothermal compressibility 1/387.

forbidden zones are shown as dashed lines. The negative
disordered-lattice isochores —pa (7)) are also plotted
for areas o3 and o7. Let us assume we want to keep the
system at a constant area ¢z Under zero external
pressure, the equilibrium point is at A4, corresponding
to a temperature 7'4. As the temperature is increased,
the system can be kept at constant area o3 by applying
an external pressure. When the temperature reaches
Ty where the appropriate external pressure is of mag-
nitude py=BC, the system becomes mechanically un-
stable. Then the area will spontaneously increase to
(say) o7 which is a stable state at temperature T4
under an external pressure py=BC=DUE. In the range
T1<T<T. it is impossible, by any manipulation of
the external pressure,® to keep the area at value os.
Above T4 it is again possible to maintain the area o3.
If the metastable equilibrium is disrupted before the
mechanical instability point is reached, the range of
temperature over which it is impossible to maintain
constant area is widened somewhat.

An inset on Fig. 3 shows the schematic variation of
1/BT as a function of temperature for a constant area

& There is, in principle, a way to keep the volume of a three-
dimensional crystal constant. It consists of clamping the crystal
in an infinitely rigid holder. This is equivalent to making the
disordered lattice incompressible. In this case inequality (10)
is fulfilled at any temperature. In practice this can not easily
be realized; one usually places the sample in a fluid under pressure
which is externally set at some given value.

GARLAND AND R. RENARD

o3. At 77 and T, 1/B8T vanishes; the dashed lines
represent the behavior expected if the area could be
kept constant (i.e., if one could work in an unstable
region). Because of the instability, the area of the
crystal between 7y and 7% depends on the way the
experimental run is conducted. The actual area can
correspond to an equilibrium point close to or far from
an instability point. As a result, experimental values
for 1/8" between T3 and 7% can vary between 0 and
an upper value corresponding to the completely dis-
ordered state. Consequently, compressibility measure-
ments at constant area o3 are meaningful only outside
the temperature interval 70 <7< T%.

CONCLUSION

The preceding illustrations of instability and hystere-
sis near a critical point have been given in terms of a
two-dimensional model. The generalization of the dis-
cussion to a three-dimensional Ising model is quite
easy. For a real three-dimensional crystal, 1/8," is
experimentally known to be finite at temperatures
above 7', and according to our model it is therefore
finite at all temperatures. Recent approximate cal-
culations®! indicate that Cr for a cubic Ising model
does approach infinity as 7" approaches T'.. If so, there
will be a range of temperatures in the critical region
for which the inequality (10) cannot be satisfied. If
Cr does not in fact become infinite at 7', the system
may display a lambda transition. However, a very
large finite value for C; can still cause a soft crystal
(for which 1/847 is small) to become unstable. If the
crystal does become unstable before the critical point
is reached, there is also a region of metastability
and the strong probability of hysteresis. The general
nature of the hysteresis is the same as that shown
in Figs. 1-3 since the isotherms and isochores for p;
and pa have qualitatively the same shape in three
dimensions as in two (although the p; curve is less
symmetrical in three dimensions).

In summary, a first-order transition is to be expected
in crystals near a lambda point unless some special
kind of strong lattice-spin coupling is invoked. The
observable effects of this instability should be large
only when (a) the lattice is quite compressible (847
large) and (b) the spin interactions are a sensitive
function of distance (dJ/dv large). Thus, this phe-
nomenon is difficult to observe in many ferromagnetic
solids. In Paper IIT we hope to show for ammonium
chloride, which satisfies both Conditions (a) and (b),
that the experimental data conform very well to the
predictions of this model.

( ’J.)W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802
1963). 3 g

10, S. Gaunt, M. E. Fisher, M. F. Sykes, and J. W. Essam,
Phys. Rev. Letters 24, 713 (1964).
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