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Temperature and Pressure Dependence of the Elastic Constants of Ammonium Bromide* I 

c. W. GARLAND AND C. F. YARNELLt 

De/Jarlillelit of Chcmistry, Research Laboratory of Electronics, .1Ild Center for Materials Science and Eligineering 
AT assachuset/s Illstilute of Tcch.nology, Cambridge, M assachllsc/ts 

(l.(eceived 6 Octoher 1965) 

The adiabatic elastic constants of single-crystal ammonium bromine have been measured as functions 
of temperature and pressure by a pulse-superposition technique. The values at 1 atm and 300°1( a re: ell = 
3.414, C' = (C,,-CI2) / 2 = 1.316, and e .. =0.722, in units of 10" dyn cm- 2• :Measurements of G" and C' were 
not made below the lambda transition at 234.5°1( because of a sudden increase in attenuation; e" was not 
attenuated in this manner and was measured from 105° to 320°1(. The elastic constants were measured 
as functions of pressure between 0 and 12 kbar at constant temperatures which ranged from 255° to 315°K. 
In this region, which is far from the lambda line, disordered ammonium uromide behaves like a normal 
CsCI-type crystal. 

INTRODUCTION 

ALAl\fBDA transition at 23-!.5°K in crystalline 
ammonium bromide was first discovered from 

heat-capacity measurements.I _This transitIOn is now 
established as an order- disorder transi tion invOlVing 
the relative orientatIOns of adjacent ammOl1lum IOns. 
However, there are important dilIerences between the 
ordering process in NH4llr and that in NILC1, which 
undergoes a cooperative order-disorder transition at 
about the same temperature (242.8°K). X-ray,2 neu­
tron-diffraction,a Raman,4 and infrared5 investigations 
show that above their critica l temperatures both NH.Br 
and NH4Cl have a CsCI-type cubic structure with the 
tetrahedral ammonium ions oriented at random with 
respect to the two equivalent positions in the cubic celi ~ 
(hydrogen atoms poinling toward nearest-neighbor 
halide ions). Hettich6 observed that ammonium bromide 
does not become piezoelectric below the lambda point 
but does exhibit double refraction. This result and the 
low-temperature Raman spectrum led Menzies and 
J\.1ills4 to suggest that the ammonium ions in two ad­
jacent unit cells were antiparaJlel (have opposite 
orientations relative to the crystaJlographic mds). Low­
temperature x-ray studies7 have shown that the crystal 

* This work was supported in part by the Joint Services Elec­
tronics Program under Contract DA 36·039-AMC-03200 (E), 
and in part by the Advanced Research Projects Agency. 
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structure of NH4Br becomes tetragonal below the I 
transition, and the neutron-difIraction work3 establishes 
the location of the hydrogen atoms and confirms that t 
this phase is ordered. The tetragonal unit cell, as shown 
in fig. 1, contains two molecules of ammonium bromide. 

FIG. 1. Unit cell for 'Y-phase (ordered tetragonal) ammonium I 
bromide. [From E. L. 'vYagncr and D . F. Hornig, J. Chem. Phy~ I 
18, 305 (1950).J . 

I 
The ammonium ions are antiparallel ordered in the 
al- at plane and parallel ordered along the aa or tetrag. I 
onal axis. The anti parallel ordering of ammonium ions 
is stabilized by the bromide ions which are displaced 
along the tetragonal axis alternately in positive and I 
negative directions with respect to the aj-a2 plane bY

I tWa where 11 = 0.02. The tetragonal distortion is very 
slight, amounting to an extension of the aa axis by only 
0.3 % relative to the al and a2 axes.7 In contrast, the 
low-temperature ordered phase in ammonium chloride , 
is cubic (CsCI type), and all the ammonium ions are 
parallel (have same relative orientation with respect to l 
crystallographic axes). I 

The thermal expansion data also show ' a marked 
difference between NH413r aml NH4Cl. In NH4Ci, the , 
bllice undergoes an anomaloLls contraction8 when 

8 Y. Sakamoto, J. Sci. Hiroshima Univ. Al8, 95 (1954). 
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ordering occurs on cooling the crystal below the lambda 
temperature. In N"H4TIr the situation is reversed; on 
rooling there is a n anomalous \a.ttice expansion9 as tbe 
bromide crystal undergoes the l ransition to the ordered 
tetragonal form. These vol\llllc changes 3.ssociated with 
changes in ordering make it easy to follow the transition 
ttll)peratures as a function of applied pressure. Stevcn­
s()lilO has obtained the phase diagrams of ammonium 
chloride, bromide and iodide. His phase diagram for 
,lIl1lnonium bromide is reproduced in fig. 2. (The region 
l'J\compassed by the sloping lines labeled Vj to V17 in 
this figure indicates the region of the phase diagram 
';ludied in the present investigation.) The (3, -y, and 0 
phases correspond to the structures disordered cubic 
((sCI), antiparn.l lel ordered tetragonal and parallel 
ordered cubi c (CsCI), respectively. An a phase corre­
'ponding to a disordereu N"aCl-type cubic structure 
occurs. at high temperatures but is not shown here. 
There is also a very pronounced hysteresis associaled 
with the -y-o order- order transi lion at 1 atl11, which is 
not shown in this figu re. 

The present paper reports on a variety of ultrasonic 
velocity measurements which have been made Oi l 

, ingle-crystal ammonium lJl"omide. Both longitudinal 
and transverse \vaves were studied over a wide range 
"f pressure (0 to 12 kbnr) at several constant tempera­
tmes in the mncre 255°- 315°1(. These data all pertain 
to the disordered phase away from any transition line, 
and should provide ;t clear example of the "normal" 
behavior of a esCl-type ammonium halide free from 
<Inv elTects due to ordering. Velocity measurements 
ha~e also been made as a function of temperature at 
1 atm, although data could be obtained below the 
lambda temperature (23-1.5°K) only for Lhe transverse 
\l'a\'e associated with C44. 

This investigation is closely related to previous 
st\ldiesll . l~ of the elastic cons tants of ammoniulll chloride 
;\s fUllction s of temperature and pressure. These studies 
"hoI\' that the shear elas tic C(,nstants for ammoniulll 
chloride (especial! y C44) varied almost linearly wi th the 
I"Olume. Since the volumes of ammonium chloride and 
hromide vary in an opposite manner at the lambda 
te lllperature, we would expect that C~4 should also vary 
in an opposite mannel". For ammoniu m chloride, C44 

increases markedly as the temperature is lowered 
through the transit ion; therefore C44 for the bromide 
would he expected to decrease. 

The results presented below are given in terms of 
the variation of the three adiabatic elastic constants Cll, 

ell, C', which can be ol)tained directly from the experi­
mental sound velocities. Third-orde r elastic constants 

e F. Simon and R. Bergmann, Z. Physik. Chem. 8Il, 255 
(1930). 

,0 R. Stevenson, J. Chtm. l'hys. 34, 1757 (1961) . 
"C. W. Carland and J. S. Jones, J. Chem. Phys. 39, :211 7.+ 

(1%3}. 
"C \Y. Carland und R. Renard, J. Chem. Phys. 44, t 130 

(1966 . 
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FIG. 2. Phase diagram for NH.Br. The {J phase corresponds 
to a disordered, CsCI-type cubic phase; the 'Y phase to an (anti­
parallel) ordered tetragonal phase; the Ii phase to a (parallel) 
ordered, CsCI-type cubic phase . The vertical bars represent 
transition points as de~ermined by the static volume measure­
m~nts of Stevenson (Ref. 10). The set of sloping lines labeled 
I ', through VI1 represent isochores at various volumes . 

are not used, and for pressures above 1 atm the quan­
tities CII, CH, and C' are "effective" elastic constants. u 

The relations between the ultrasonic velocities and the 
ehstic constants of a cubic crystal are well known: 

Propagation ilt tlte [100J direction 

Cl1=pU I2, 

C44=pU?, 

( 1) 

(2) 

where p is the Illass density 6f the crystal, UI is the 
vdocit), of the longitudinal sound wave, and Ut is the 
ydocity of a transverse wave polarized in any direction 
perpendicular to the [lOOJ axis. 

Propagatioll ill tlie [110J direction 

(3) 

(4) 

where Ul , is the velocity of the longitudinal wave and 
U I' is the velocity of a transverse wave polarized 
perpendicular to the [OOlJ axis. Values of Ul , were 
measured only at 1 atm from 250° to 300 0 K as a check 
on the internal consistency of the data. 

Since the crystal structure of ammon ium bromide 
changes from c\lLic to tetragonal below the (3" lambda 
transition, one mllst consider the elTect of this symmetry 
change on the elastic constants of a crystalline sample. 
The tetragonal axis aJ is now not equivalent to the 
other axes, and therefore CJJ~Cll, CJ3~Cj2, and C66~CH 
in the low-temperature phase. Since data were obtained 

13 R. N. Thurston, J. Acoust. Soc. Am. 37, 348 (1965). 



, . .. ~ ~ -.. ' 
~I; ., - " 

.. 
. . 

1114 C. \Y. GARLAND AND C. F. YARNELL 

helO\v TA only for transverse waves propagating along 
a [lOOJ axis in the cubic phase, we shall give the appro­
pria te equations in the tetragonal phase only for that 
type of W~Lve. When an oriented cubic crystal becomes 
tetragonal, the transverse velocity U/ is still given by 
Eq. (2) 1J the tetragunal axis lit.:s parallel to either the 
direction of wave propaga tion or the direction of 
polarization (particle motion). In case the tetragonal 
axis is oriented perpendicular to both the direction of 
propagation and the direction of polarization, U/ is then 
given by pU/=C66. It is likely that a cubic NH4Br 
single crystal is transformed below TA into a sample 
with small tetragonal domains, in which a3 is oriented 
parallel to the form er x, J', or z axes. If this is so, then 
the measured ultrasonic velocity will be some kind of 
mechanical average denoted by CH. 

EXPERIMENTAL WORK 

U1trasonic velocity measurements were made by a 
McSki min pulse-superposi tion methodl4 .15 at a frequency 
of 20 1\lc/ sec. Although this method is experimentally 
and computationally more dil1icult than the pulse-echo 
method, it is capable of very high accuracy since the 
basic measurement involves a frequency value rather 
than a time delay and it is possible to evaluate quantita­
tively the effect of the phase shift 'Y associated with 
reflection of the sound wave at the transducer+seal 
end of the sample. A clt.:5cription o.f this method and of 
the necessary electronic apparatus has been given 
previouslyl2 and is not included here. 

The hydralllic pressure equipment was of conven­
tional design, but since t.he sample cell was fabricated 
from 43-10 steel it was not considered safe to generate 
high pressu re in it below 2S0oK. The temperature of this 
cell could be controlled to within ±0.05° by a large 
thermostat bath. Further details of this pressure equip­
ment and a description of the regulated temperature 
bath used for measurements at 1 atm are available 
elsewhere .12 

The single crystals used in these experiments were 
grown by a modified Holden process. 16 To obtain a 
saturated solution at "-J45°C, 1200 g of ammonium 
bromide (analytical reagent grade) and 600 g of urea 
were addee! to one liter of distilled water. This large 
amount of urea was necessary as a habit modifIer to 
prevent dendritic growth and to promote the growth 
of large cubic crystals with (100) faces. All of the single 
crystals obtained Were pale yellow in color and had 
some imperfections. Fortunately, these imperfections 
were either ne,Lr an edge or near the center of a single 
face and the lmnsducer could always be located so that 
they would not li e in the path of the acoustic wave. 

14 H.]. McSkimin, J. Acoust. Soc. Am. 33,12 (1961 ) . 
"H. J. !lfcSkimin and P. Andreatch, ]. Acoust. Soc. Am. 34, 

609 (1962); 37, 864 (1965). 
JG . \. N. 1 Iolden, Discussions Faraday Soc. 5, 312 (19-19). 

An analysis of the bromide-ion content indicated that 
these crystals were at least 99.9% NH4Br. Three differ­
ent crystals of ammonium bromide w<:re used to obtain 
the present data. For Crystals I and II, a pair of natural 
(100) faces were used without any mechanical cutting 
or polishing. The lengths (L20) in the [100J direction 
as measured by a lightwave micrometer at 20°C were 
1.0905±0.0005 cm for Crystal I and 1.1935±0.QOO5 
for Crystal II. The third crystal (III) was fly cut to 
give a pair of parallel (110) faces, and the length L.o 
in the [110J direction was 0.5641±0.0007 cm at 20°C. 
As a result of handling, exposure to the atmosphere, 
and seal changes, the path lengths in all these crystals 
decreased slowly with time. Periodic length measure­
ments were made and corrections were applied to 
eliminate any small systematic changes in the elastic 
constants due to path length changes. 

A density p~o of 2.4336 g cm-3 was calculated from 
a lattice constant of 4.0580 A at 20°C; this unit cell 
constant is based on several different x-ray investiga­
tions around room temperature,7·17 The elastic constants 
at 1 atm were obtained as a function of temperature 
from equations of the type 

where U is the appropriate velocity, 0 is the true round­
trip transit time associated with the sound wave, and 
LT is the sample length at 1 atm and temperature T. 
The quantity (L 20/ L T ) was calculated from the poly­
crystalline thermal-expansion data of Simon and 
Bcrgmann9 and from the low-temperature x-ray data 
of Hovi, Heiskanen, and Varteva.7 Obviously, the 
x-ray measurements give the tetragonal cell dimensions 
(a3~al = a~) below TA. On the assumption that a large 
cubic single crystal is transformed into small domains 
with the tetragonal axes of these domains lying at 
random along anyone of the original [100J directions, 
we have taken LT to be the cube root of the volume 
below T A• The two sets of data are in very good agree­
ment except in the region 230o-235°K, where the x-ray 
data. indicate an almost discontinuolls change in Lr 
with temperature. The rapid but continuol;s variation 
obtained from Simon a.nd Bergmann's data was used 
in this region. However, this choice has a negligible 
effect (0.05 %) on the values of the elastic constants 
at 1 atm. 

To calculate the elastic constants as a function of 
pressure, it is convenienU8 to introduce another path­
length ratio s(p) = L1/ L p , where Ll is the sample length 
at a given temperature and 1 atm and Lp is the length at 
the same temperature uncler an external applied pres­
sure p. The elastic constants at a given temperature can 

17 V. T. Deshpande and D. D. Sirdesmukh, Acta Cryst. 14, l 
353 (1961); V. C. Anselmo and N. D. Smith, J. Phys. Chern. 63, I 
1344 (1959). 

I~ R. K. Cook, J. Acoust. Soc. Am. 29, 445 (1957). 
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then be obtained as a function of pressure from equa­
tions of the type 

(6) 

whe re 01 and 01' are the transit times corresponding to 
I aim and to a pressure p. In general, the calculation of 
l(P) requires a knowledge of the isothermal compress­
ibility as a function of pressure. Jlo\\,ever, an excellent 
approximation to s(p) can be calcu lated directly from 
our present adiabatic velocity datal H since the dilTerence 
between the isothermal and ad iabatic compressibilities 
is very small except in the immediate vicini ty of the 
lambda. point. [At 300°](. and 1 atm, ([3T_f3S) / f3s is 
only 0.007.l Since s(p) values vary only between 1.00 
and 1.02 for the pressure range 0 to 12 kbar, small 
lIncertainties in the s(p) variation do not cause sig­
nilicant errors in the clastic constant values (which 
depend moslly on 01/ 0,. ). 
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For measurements made at 1 atm, the quartz trans­
ducers were cemented to the sample with Dow resin 
276-V9 as the seal material for all runs between 215 ° 
and 320°1(. Below 215 °1(, these seals broke and Nonaq 
stopcock grease was used in a few runs despite the fact 
that it seemed to dissolve the sample slowly. Since the 
Dow resin was soluble in the hydraulic pressure fluid, 
it was necessary to fmd a new seal material for the 
high-pressure work. J\ polymer of phthalic anhydride 
and glycerin was found sui tablel2 and was useJ for 
all the pressure runs . 

The Dow resin and Nonaq seals were all very thin. 
Thus the phase shifts 'Y were small (between _5 ° and 
_8°) at a ll temperatures, and the corrections to the 
tmnsit times l2 due to phase shifts amounted to only 
0.01 % at 1 atm. Since all high-pressure measurements 
were carried out at a frequency equal to the resonance 
frequency of the transducer at 1 atm, th cll" \\ l:fe 
appreciable changes in the phase shifts 'Y as a fu nl lion 
of pressure. This effect of pressure on the behavior of 
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the transducers is known 14 and was corrected for. The 
effect of pressure on the seal is not known and has been 
neglected. 

RESULTS 

Constant-Pressure Data 

The open-circle points shown in Figs. 3-5 are experi­
mental data points for the clastic constants Cll, C44, and 
C' as functions of temperature at 1 atm. Smooth-curve 
values of these directly measured quantities are pre­
senteel in Table I together with the adiabatic bulk 
modulus 1/ {3S, which can be calculated from 

(7) 

Since the temperatures in Table I are all above the 
lambda point, all entri es pertain to the disordered cubic 
phase of NlI4 ilr. 
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«/16=-1-.0-1-96 .~); + .. ·1'17 (a17=4.05 17 A). 
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TABLE .r. Slllooth,cu[\'c values at one atmosphcre of the 
adiabatic elastic constants Cll, CH, anti C' anti calcu lated values of 
1/f3s for NIL, Br in the cubic disordcred phase, all in units of 10" 
dyn Clll-'. 

T(OK) 

235 
236 
'237 
231; 
2~O 
245 
250 
260 
270 
2110 
290 
30() 
.ll0 
320 

3.2640 
3.2860 
3.311)0 
3. 369.J. 
3.3942 
.3 .4205 
3 .4293 
3 . .J.293 
3.4236 
3.41~4 
3.4028 
3.3885 

0.7992 
0 . 7987 
0.7977 
0.7968 
0.7948 
0.7897 
0.7842 
0.7726 
0.7605 
0.7478 
0.73.J.9 
0.7218 
0.7083 
0.69-14 

C' 

1.3110 
1.317l 
1.3205 
1.3231 
1.32{JO 
1.3292 
1 .3300 
1.3289 
1.3264 
1 .3232 
1.3197 
1.3160 
1. 3122 
1.3083 

t.5033 
1. 5219 
1.5510 
1. 597 1 
1.6209 
I . ()-.186 
1.660X 
1.6650 
1.66.J.0 
1.6597 
1.6532 
l.~.J.l 

-=--c== _~ ___ __ _ . 

As the temperalure was lowered toward the transilion 
temperature, an increase in attenuation was observed. 
for longit urlinal waves in the [100J ancl [11 OJ tli rection 
and for the transverse wave which yields e', Lhe aLLcnu­
ation increased rapidly at the transition temperature 
and the echoes completely disappeared. As the telll­
perature was lowered below 210 0 K, echoes slowly began 
to reappear. The shape of these echoes was very poor, 
and there was still a great deal of attenuation. Thus it 
was not possible to make meaninbrful velocity me'lsurc­
ments for ClI and C' below the transition. 

for the transverse waves associated with CH there 
was only slight attenuation in the critical rcgion, and 
data could be obtained over the entire temperature 
range 1000 -320°J( includinK the immediate vicinity of 
T". Values of C44 were determined between 215° and 
235°K on all L1nee crystals (using both [100J and [110J 
propagation directions) and good agreement was ob­
tained. This lends support to the iuea that there are 
small domains with their tetragonal axes randomly 
oriented along the x, )" or z axes of the original cubic 
crystal. In that case, the measured pU t

2 values below 
the tran sition point correspond to an average shear 

TABLE II. Slllooth,curve values of the adiabatic quantity 
pU,'=c" for NH,nr in the tctra~onal (orderetI) phase at 1 atm, 
in units of 1011 dyn cm-2• 

T(OK) e .. T(OK) e" 

110 0.7713 205 0.7273 
120 0.7639 210 0.7297 
130 0.7567 215 0.7331 
140 0 . 7496 220 0.7386 
150 0.7~27 225 0.7.J.81 
160 0 . 736.J. 230 0.7627 
170 0.7307 231 O.76HO 
180 0.7265 232 II 7725 
190 0 .7244 233 ~(J.771l 
200 0.7258 23.J. ~0 .79 

constant C.14 which is related to the single-crystal 
tetragonal const'ants by CH = H2c44+C66). Values of 
pUl=C44 obtained from measurements along a [100] 
direction (in the original cubic crystal) are given in 
Tahle J.f lllld shown in Fig . .t. 

:\Ithough it is not shown itl fig. 4, hyste resis was 
observed in the temperature behavior of C44. On cooling 
thc silmplc a sh'Lrp drop in C44 occurred at 23-1-.2°1\, 
whereas the most rapid jump in the C4l value Gn warming 
the sample occurred at 23.]..8°K. This temperature 
hysteresis of 0.6°K is quite comparable to the hysteresis 
of 0.9°J( ohserved for both C44 and C' in ammonium 
chloride. 12 

The greatest sources of error in these elastic constants 
at 1 atrn arc due to uncertainties in the path lengths 
at 20°C (±O. l %) and ambiguities in the choice d 
the II =0 conclitionl~ for shear waves (especially for e(l) , 
Therefore, to check the possibility that a wrong n=O 
value had been chosen and also to check the internal 
consistency of our data, the velocity of the longitudinal 

'fAilLE Il I. The adabatic elastic cOll5lants and bulk modulus 01 
ammunium brumide s ill~ l e crystals at room temperature obtained 
from the present mC<L$uremcnts (I') comparee! with the results 
ubtained by IIaussuhl (II) and by Sundara H.oa and Balakrishnan 
(S and Il); the iJulk modulus of polycrystalline ammonium bromiJe 
obtained by Bridgman (13) is included. At! values are given in units 
of lO" dyn cne'. 

.~~~~-=~====~~====== 

Obs. T(OK) ell e" C' e,! 1 /~l 

p 300 3.414 0.722 1.316 0.782 1.66 
H 293 3.38 0.685 l.U 0 . 91 1.73 
Sand B 21)8 2 .% 0.53 1.19 0.59 1.38 
13 298 1.63 

wave in the [llOJ direction was measured as a function 
of temperature. The experimental value of pU I ,2 for 
this wave and that calculated from Eq. (4) using the 
tabuhted values of Cll, CH, and C' were within 0.1 
percent of each other over the entire tempel'llture 
range 2500 -300°K. This eliminates the possibility of a 
systematic error in the choice of the 1/ = 0 value for e', 
For C44 there is sti Jl a possibility that the reported values 
may be systematically in error by ±0.9%. A propaga­
tion-of-errors t.reatment indicates that the random 
error in all three elastic constants is about ±0.2% at 
all temperatures. 

The independent adiabatic elastic constants of single­
crystal ammonium bromide at room temperature have 
been measured by Sundara Roa and Balakrishnan!9 
and by Haussuhl,20 who also measured the temperatu re 
dependence down to the transition, Table III gives a 
comparison of the elastic constants and the bulk 
modulus obtained by these investigators with the results 

Ii R. V. C. Sundara Rau anti T. S. Balakrishnan, Proc. Tnd. 
Acad. Sci. 28A, 480 ( 19.J.8) . 

20 S. H[lussuhl, ,\ cta Crysl. 13, 685 ( 1960). 
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of the present experiments, Also il1cluded is the adiabatic 
bulk modulus of a polycrystalline sample calculated 
from Bridgman's isothermal value.21 The large difference 
between the present results and those of Sunclara. Roa 
and Balakrishnan should not be taken too seriously 
si nce the latter were reported to be accurate only to 
within 10%. The agrE'emcn t wi th Haussuhl's elast ic 
constants is not very good, although the slopes of his 
clastic constants versus ll'mper:lture agree quite well 
with those of the prcsen t measurements. 

Constant-Temperature Data 

The experimental values of Cn, CH, and C' as functions 
of pressure at various constant temperatures are sho\l"l1 
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FIG 6, Dependence of e" on pressllre at various temperatures . 

in Figs. 6- 8, Data on the shear conslants were obtained 
wilh 20-~Ic/sc c transducers, but these showed a bad 
tendency to break after several high-pressure runs. 
~reasurements of CIl were made at 30 Mc/ sec by using 
a lO-:Mc/scc lransducer, and this did not break on 
repeated runs at various tc:mperatures. A tabulation 
of the smooth-curve va lues of these elastic constants 
as a functi on of pressure is given in T<1.ble IV. The limits 
of error in these clastic constant values at high pressures 
is somewhat greater t han that at 1 atm due to greater 
llncert ai n t y in the phase-shift correction term. (There 
is an appreciable increase in 'Y with an increase in the 
pressurt.) 

21 r. \y, llric\!;man, Phys. Rev, 38,1 82 (1931), 
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Bridgmun21 has measured t:..1' / 1'0 as a function of 
pressure for ammonium bromide at 0° and 75°C. A 
comparison of his values with the values calcu lated 
from o,ur present data shows that his values are about 
6% high, Bridgman's dilTerence between t:.. V / Vo for a 
given pressure interval at the two temperatures is about 
3 to 4 times greater than that observed in these experi­
men ts, The explanation for this di !Terence seems to be 
that Bridgman's data were taken on a pressed poly­
crystalline sample, which one would expect t.o be more 

~~ 
U 
<II 

""' Z ,.. 
o 
b 
'e o 
<II 
f-

Z 
:;) . . 
u 

1.20 

o 4000 6000 8000 10000 '2000 

PRESSUREIBARS) 

FIG . 8. Dependence or c .. on pressure at various temperatures. 



. ' 
- ~. .. . - ~ , . 

t • 
~ ,l''' • 

1 

1118 C. W. GARLAND AND C. F. YARNELL 

TABJ.E IV. Smooth-curve values of the efTcctive adiabatic 
elastic constants e", eH , and ' C, in units of 1011 dyn cm-2, as a 
function of pressure at various temperatures. Calculated values of 
l/{3s are al so given at two temperatures. 

T=315°K 

p(kbar) e" p(kbar) e" p(kbar) ell 

0 3.396 4 3.757 8 4.063 
2 3.583 6 3.914 10 4.205 

T=295°r,;: 

p(kbar) e" e .. C' 1/{3s 

0 3.419 0.792 1.318 1.662 
2 3.615 0.805 1.3-1-3 1.824 
4 3.789 0.879 1.363 1. 972 
6 3.9-19 0.951 1.3815 2.107 
8 4.097 1.020 1.398 2.233 

10 4.236 1.091 1.4145 2.350 

T=275°K 

. p(kbar) e" e" p(kbar) e,l e" 

0 3.430 0 .754 6 3.978 0.975 
2 3.639 0.830 8 4. 129 1.046 
4 3.819 0.903 10 4.272 1. Il-J. 

T=255°K 
p(kbar) (" e .. C 1/{3s 

0 3.411 0.778 1.330 1.638 
2 3.65-1- 0.856 1.358 J .8-1-3 
4 3 fi 43 0.931 1.379 2.00-1-
6 4 . 010 1.003 1.397 2. 147 
8 4.162 1.073 1. 4135 2.277 

10 4.302 1.140 1.4285 2.397 

compressible than n. single crystal. Indeed, the same 
kind of discrepancy between single crystal and Bridg­
man's polycrystalline value is also observed in ammo­
nium chlorideY 

Constant-Volume Data 

In the temperature region above the lambda point, 
it is possible to comiJine the results presented above to 
obtain the variation of the elastic constants with tem­
perature at constant volume. From the known tem­
perature dependence of the cubic cell parameter at 
1 atm and the pressure dependence of s(p), one can 
compute the hydrostatic pressure which must be applied 
to the crystal at any given temperature in ordn to 
maintain ils volume at a constant value. This has been 
done [or the 17 different values of the volullle: Vt 

corresponds to a unit cell dimension of al=3.985 A; 
V2 through V l2 correspond to a values which are each 
0.005 A greater than the previous value (up to a12= 

4.040 A); Vl3 throup:h V17 correspond to aI3=4.0425, 
a14=4.045, aI6=4.0476, aI6=4.0496, and a17=4.0517 A. 
The corresponding p-T isochores are plotted in fig. 2. 
With these isochores, one can easily evalua.te till' (·nec­
tive adiabatic clastic constants at constant volume. 
Such constants have been plotted in Figs. 3- 5 for a 
felV high-volume values as a comparison with lIw varia­
tion at constant pressure. Constant-volume elastic con-

stants are shown in Fig. 9 as a function of temperature 
for all 17 values of V. 

DISCUSSION 

Far from the Lamhda Transition 

As shown in Fig. 2, the principal region of this inves­
tigation is the disordered f3 phase of ammonium bromide. I 

At pressures up to about 3000 bar the elastic constants 
show a nonlinear variation with pressure due to the 
fact that the crystal is still in the vicinity of the {3---, 
lambda line. At higher pressures, farther from the 
lambda line, the variation is linear as expected for a 
normal solid having no transition. This is clearly 
illustrated by the temperature variation of the constant· 
volume elastic constants shown in Fig. 9. Presented in 
Table V is a comparison of our data on ammonium 
bromide wilh recent data on ammonium chloridel1 ; these 
results are discllssed below in the general context of the 
behavior which is known for alkali halide crystals. The 
N1l 4Ci elastic constants have been measured in a region 
of the phase diagram which contains the lambda linell ; 

therefore the behavior of these constants will be some­
what influenced by the proximity of the order-disorder 
transition. On the other hand, NH4Br should be typical 
of a "norm.tlI> CsCI-type crystal (at least above 
3000 bar). 

Hallssuh12~ has found that all alkali halides of the 
NaCl type obey lhe inequality T' < Til < T44 , where Til 

represents (8 Inc.j/ 8T) p at atmospheric pressure and 
is a negative quantity. For several alkali halides of the 
CsCI lype the inequali ty has been found20 tu be 

(8) 

As shown in Table V, the slores at 320 0 K of the elastic 
constants of ammonium bromide obey this CsCI in-

4 .30 ---- --- 1.45 1.10 -N 

:. -- -<.) 4.10 -- ========= -'" w --- ~ --z 
>- 1.40 ===::::::::: 1.00 
0 ---- --Q ==:::::::: --3.90 

======= 
-"- - --0 -'" % 

1.35 --2 0.90 --f- --Z :::==--
2 3.70 --
~ 

c' =:::::::::: u 1.30 0.80 ----.: 

======== 3.50 ~ -c44 

260 280 300 320 260 280 300 

T (OK) 

FIG. 9. Adiabatic elastic constants versus temperature at 
various conslant volumes from V, to V17 (see text). The highest 
curves correspond to 1',. 

22 S. Haussubl, Z. Physik 159, 223 (1960) . 
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TAnLE V. The adiabatic elastic constants of ammonium bromide and their temperature and pressure deriva tives compared with the 
rtsults of Garland and R enard (j{ef. 12) for ammonium chloride. Th e value of a Inc,, / aT at 3500 K was measured hy Weintraub (R ef. 
2Jl; the other a Inc/ aT values \\'cre detcrmined a t 320oK. The clast ic constants a re in units of 10" dyn CIll- 2; the temperat ure de­
rivat ives are in units of 10- ' dcg- ', and the pressure derivat ives are in units of 10- 12 cm2 dyn- ' . 

NIT.,C I NH,Rr 

ell C' e .. ell C' e .. 

e(295° K ) 3.81·l 1.466 0 .8753 3.419 1.318 0 . 72115 

(a ln r/ c1T),,_o - 1.5 -2.8.1 -17.1 -4.32 -2.93 -19.8 
-5.3(3500 K) 

(aIne/ aT) v 4.0 - 0 .78 -2.66 3.60 -0.05 -5.86 

(alnc/ ap h - 295oK 4.63 0.81 5.12 3.17 1.03 5.30 

_-. __ - __ -_-_-_----- =0=-::::=================== 

equality. At 3200 K the slope of Cll for ammonium 
ch loride does not seem to fit the pattern; however, if 
one assumes that CIl hasn't' reached its limiting " normal" 
hehavior ( i. e., that it is s till being influenced by the 
nearby lambda transition), the slopes for the clast ic 
constants would obey the inequality. Indeed, the u n­
published results of \Veintraub ~ :l on the variation of Cll 

with temperature between :100° and 375°K illdicate 
Ihat Gil becomes linear with respect to T only above 
33SoK, where TIl =-5.27Xl0- 4 deg- l • This value 
would sat isfy the CsCI inequality very well. 

The pressure derivatives of the elastic constants, 
1\= (a lnc;;/aph, will obey similar in equaliti es. Data 
as a fun ction of pressure are available for seve ral 
alka li halides of the NaCI type24 for which the in­
equ:dity is pi> Pu> PH. This is reasonable since a 
decrease in temperature corresponds to an increase 
in pressure in terms of its efTect on the molar volume 
(and thus the elast ic constants). Although no clata 
appear to be aVililable on the pressure dependence 

I of the elastic constan ts of alkali ha lides of the CsCI 
. Iype , th e expec ted in equality would be 

(9) 

Both the ammonium Lromicle and chloride da ta obey 
this ineq ualit y ove r the en tire range of tempera tu res 
for which pressure measurements have been made; the 
values of Pi; at 295 °K, as given in T able V, arc typical. 

At COllstant volume the inequalities for the tempera­
ture derivat ives of the alkali ha lid es of the NaCI 
Iype which have been studied is T' < T 44< Til (constant 
volume). for the ammoniulll halides at constan t volume 
the corresponding inequality is 

(constant volume). ( 10) 

Thi s comparison of the behavior of the ammonium 
halides with that of NaCI-type alkali halides im l!lt.: 

' I A. Weintrauh, senior thesis, MIT, 1963. 
" D. Lazarus, l'hys. Rev. 76, 5-15 (1949); R. A. Miller and C. 

S. Smith, J. Phys. Chem. Solids 25, 1279 (196-1 ). 

diately reveals a significant dilTerence: the slope of Cll 

versus tempera ture at constant volume for ammonium 
brom ide and chloride is positive while it is always nega­
tive for the NaCI-type salts.24 This behavior cannot be 
due to an in fl uence of the lambda transition since for 
NH4Br at the lowest volumes (far from the transition) 
anomalous temperature variations in Cll are absent· and 
Gil varies linearly with tempera ture (as a normal crystal 
should) . 

Comparison of the clas ti c constant values in Table V 
shows that those of ammonium chloride are greater 
than the corresponding ones for the bromide. This is in 
general what is obse rved for all of the alkali halides. 
As the mola r volume (and mass) increases, the stiffness 
(and thus the elast ic constants) decreases. The tem­
perature and pressure derivatives of the elastic constants 
of am monium bromide are very similar to those of 
ammonium chloride, although the pa ttern is not regular 
enough to permi t scaling. If these derivatives a re taken 
as measures of the anharmoni city of the crystal, then 
ammonium chloride and ammonium bromide have 
quite similar anharmonicity . 

N ear the Lambda Transition 

..pur in formation concerning the (3--')' transition IS 

limited to da ta obtained at 1 atm, especially on C44 

forw~leasurements could be made below the 
1 am bdaJ2.oi n l. 
As the te;'perature is lowered, C44 for ammonium 
bromide increases linearly with temperature down to 
the lambda point whue it abruptly decreases and then 
a t a lower temperature (abollt ·!.O°K below the lambda 
point) resumes its normal increase with decreasing 
temperature (see Fig. 5). The temperature behavior of 
C44 for ammonium bromide is qualitatively compatible 
with tha t for ammonium ch loride where there is an 
anomalous increase ill G44. This is expected since C(4 ' is 
a sensiti ve function of the volume, and ammonium 
ch loride con tracts on ordering while ammonium bromide 
expands. A quantitative analysis of the effect of ordering 
at constant unit-cell dimension is complicated by the 
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tetragonal distortion of the lattice and the displacements 
of the bromide ions which occur in the "( phase on 
ordering. Nor is the Ising model theory25 applied to the 
NH4CI data valid in the case of the {3-y transition in 
NH4Br. 

The behavior of Cll just above the lambda point in 
ammonium bromide is vcry similar to that observed 
in ammonium chloride, whereas the behavior of C' is 
different in the two cases. Unlike the data for the 
chloride, C' values for the bromide show a marked 
anomalous decrease which is apparent as much as 15°K 
above the lambda point (see Fig. 4). Attenuation of 
the ultrasonic waves associated with both Cll and C' 

25 R. Renard and C. W. Garland, J. Chern. Phys. 44, 11 25 
(1966). 
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was very high over a considerable range of temperatures 
below the lambda point. This is presumably due to the 
presence of domains consisting of tetragonal crystallites 
with their unique axes lying at random along one 01 
the three original cubic axes. The presence of domains is 
common in antiferromagnetic · crystals and "(-phase 
ammonium bromide is analogous to an antiferromagnet. 

A more extended discussion of the properties of the 
ordered phase and of the lambda transition region is 
difficult and inappropriate at this time. New experi. 
mental work is now in progress on ammonium bromide 
in the region 100° to 250 0 K and 0 to 6 kbar. This will 
provide information on both the "( and 0 phases, as 
well as new data in the regions of the various transition 
lines. 
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Order-Disorder Phenomena. 1. Instability and Hysteresis in an Ising Model Near 
Its Critical Point* 

CARL \V. GARLAND AND Rhn RENARDt 

Department of Chemistry alld Cet/ter for M a/erials Sciellce and Engilleeriltg, Massachusetts Institllte of Technology 
Calltbr·idge, Jl[ assac/lIIsetts 

(Received 18 August 1965) 

The mechanical behavior of a system near a cooperative order .... disorder transition point is discussed 
in terms of an Ising model for a set of spins located on mass particles which form a compressible lattice. 
With the assumption of weak coupl ing between the lattice and spin systems, it is shown that this Ising 
model is unstable in the immediate vicinity of its critical point and undergoes a first-order transition. 
In addition, many properties should show hysteresis in the critical region. These general conclusions are 
illustrated by several two-dimensional examples. 

INTRODUCTION 

I T is a well known but striking fact that substances 
which undergo cooperative order-disorder transi­

tions usually exhibit anomalous variations in volume 
which extend over the same temperature range as the 
lambda spikes in the specific heat. A large amount of 
theoretical work has been carried out on the thermal 
properties of such cooperative systems, but little at­
tention has been paid to the mechanical aspects of the 
problem. Indeed, in most statistical theories the volume 
of the system is held fixed and it is assumed that 
experiments could be carried out directly at constant 
volume. Since it is the pressure rather than the volume 
which is usually subject to experimental control, the 
mechanical behavior of a system near a lambda transi­
tion point may be of considerable importance. 

Our treatment is based on an Ising model for a 
system of spins located on mass particles whi. h form 

• This work was supported in part by the Advanced Research 
Projects Agency. 

t Present address: Centre de Recherches, Esso Stanuard SAF, 
Mont St. Aignan (Seine Maritime), France. 

a compressible lattice. Due to its simplicity, the Ising 
model is fairly tractable and a great deal has already 
been done for the fixed-voltime case, including an exact 
solution of the two-dimensional problem by Onsager.1 

In this paper (I), the model is defined and the charac· 
ter of the transition very close to the critical point 
is investigated. General conclusions about the in­
stability of the system (and a resulting hysteresis) 
are illustrated by several explicit, two-dimensional ex­
amples. In the following paper (II), the model is 
generalized in terms of stress-strain variables for 
the two-dimensional case, and the contributions to the 
elastic constants due to spin ordering is derived in 
analytic form. Both of these theoretical develop­
ments were inspired by recent ultrasonic measurements 
on ammonium chloride ncar its lambda transition; and 
that system, which is analogous to a simple-cubic ferro­
magnet, provides several excellent confirmations of our 
predictions. The experimental results on NH4CI and 
their interpretation are given in Paper III. 

1 L. Onsager, Phys. Rev. 65, 117 (1944). 
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ORDER-DISORDER PHENOMENA. I 1121 

The possibility of an instability for a compressible 
lattice ncar an order- disorder lambda point was first 
pointed out by Rice,~ who presented a very general 
thermodynamic discussion of the problem. A few years 
later, Domb3 gave a brief demonstration of the in­
stability of a compressible Ising model, but then the 
problem appears to have languished for some time. 
~[ore recently, Dean and Rodbe1l4 have demonstrated 
that magnetic ordering can lead to a first-order transi­
tion in the critical region. They based their discussion 
on the molecular-field theory of ferromagnetism and 
presented data on MnAs as experimental evidence for 
their conclusions. Mattis and Schultz6 have arrived at 
essentially identical conclusions in their theory of mag­
nctothermomechanics. It is shown here on the basis of 
a very simple model that an Ising lattice is unstable in 
the immediate vicinity of its critical point and under­
goes a first-order transi tion with hysteresis. This is 
proved for a two-dimensional square la ttice of ferro­
magnetic particles in the absence of an external field. 
\'ery general conditions are given for observing this 
effect in a three-dimensional case. 

FORMULATION OF THE MODEL 

Let us first consider the usual Ising lattice6 consisting 
of an array of N fixed sites. Associated with each site 
are two possible spin orientations-"spin up" and 
"spin down". For zero external magnetic field, it is 
clistomary to write the energy of a given spin con­
figuration as 

( 1) 

where qp is the number of nearest-neighbor pairs in 
(he lattice with parallel spins, qa is the number with 
antiparallel spins, 'YIV /2 is the total number of nearest 
neighbors ('Y= 4 for two-dimensional square lattice, 
r=6 for three-dimensional sc lattice, etc.), and J and 
1\ are deEmed by 

(2) 

In the above, Up is the potential energy due to spin 
interaction between a nearest-neighbor pair of parallel 
spins and Ua is the interaction energy for a pair of 
antiparallel spins. The case J> ° corresponds to ferro­
magnetism. For simplicity, the model is given only for 
the case of isotropic spin interactions. Thus, the spin 
partition function is Q.=Qr(O, H) exp( -'YNK/2kT) , 
where Ql(O, H) is the well-known Ising partition func­
tion at zero field as a function of H= J /kT. 

lnstead of being concerned with the thermal behavior 
of a "clamped" sys tem of spins only, we wish to con-

'0, K. Rice, J. Chern. Phys. 22, 1535 (1954). 
! C. Domb, J. Chern. Phys, 25, 783 (1956). 
' C. P. Bean and R, S. Rodhell, Phys. Rev. 126, 104 (1962). 
'D. C. Mattis and T. D. Schultz, l'hys. Rev. 129, 175 (1%3). 
• K. Huang, Statistical Mechal1ics (John Wiley & Son" Inc. 

~ew York, 19(3), Chaps. 16 and 17; 1[. S. Greene and l :. 1\, 
Hurst, Order- Disorder PltellOlJlella (Interscience Publishrr~, lnc., 
~ew York, 1964), Chaps. 2, 3, and 6. 

sider the mechanical behavior of a more realistic model 
in which the localized spins are associated with mass 
particles (atoms, ions or molecules) which form a com­
pressible laltice. Indeed, an "unclamped" array of 
spins only is usually unstable and it is the interaction 
between lllass particles which stabilizes the composite 
system. We assume weak coupling between the lattice 
and spin systems; i.e., we assume that Q=Q.QI, where 
Ql is the partition function of the particle lattice. This 
is the crucial feature of our model. Almost all theories 
of order-disorder phenomena are based on the implicit 
hypothesis that a configurational partition function 
can be written without taking into account strong 
coupling between the spins and the rest of the system.7 

It is possible to check on this weak-coupling assumption 
for regions far away from the critical point since many 
properties (e.g., heat capacity, thermal expansion, 
elastic constants) then depend essentially on the lattice 
contribution. If th e coupling is weak, these properties 
should have comparable temperature and pressure de­
pendences in the completely ordered and completely 
disordered state, assuming that these two states belong 
to the same crystallographic group. It is, however, 
possible to imagine that the coupling will be strong 
only in the critical region. Since there is no theoretical 
evidence that this must be true in general, we have 
made the simpler assumption and present below the 
consequences of weak coupling in an Ising model. 

It proves convenient to rewrite the over-all partition 
function of the system in a new form 

Q=Q.QI=Qr exp( -'YNK/2kT) Ql= QrQdl, (3) 

where Qdl, the partition function for the disordered 
lattice, includes both the usual la ttice contribution of a 
normal crystal and the interactions between randomly­
oriented spins. As a result of Eq. (3) all the thermo­
dynamic functions can be written as a " 'swn of two 
independent contributions; in particular for the Helm­
holtz free energy, A=Ar+Aill=-kTlnQI-kTlnQdl. 
The contribution to the properties of the system which 
arise from the Qdl term can be deduced empirically 
from experiments performed on crystals considerably 
above their lambda points. We~emphasize here the 
contribution to various properties due to the Qr'term 
which describes the 'Spin ordering. The expression's for 
the configurational internal energy and specific heat 
at constant volume are well known6 and can be writ­
ten as 

U1 = - Jd InQr/dH, 

Cr=kH2d2 InQr/dH2, 

(4) 

(5) 

since Qr is a function only of H= J /kT and J is not 
a function of temperature. The: quantity J wil1,~ how­
ever, be ~ function of the spacing between lattice sites. 

7 Some work has been done on the coupling between ordering 
and viiJrational motions for a one-dimensional binary aUoy; 
A. A. Maradudin, E . W. Montroll, and C. H. Weiss, Solid~State 
Phys. Suppl. 3., pp. 188-212 (1963). 
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Thus, we can define a spin (or Ising) pressure by 
Pr= - (aAJ/aV)T; this contribution to the total pres­
sure is directly related to the Ising energy Ur by 

Pr=kT(alnQr ) dJ=(dlnQI)dJ=_~dJ (6) 
a J Tt!l' d 1 [ d JI N J dv ' 

where v= V / N is the volume per lattice site. Note that 
U I has a negative value in the ordered phase and goes 
to zero as the spi ns disorder. 

INSTABILITY AND HYSTERESIS 

At a given temperature T a system is stable, at least 
locally, if the Helmholtz free energy satisfies the con­
dition (a ZA/ aV2h2::0. For the model considered above, 
this stability condition requires that 

- (apdljallh- (apr/avh2::0, (7) 

where (apr/ut'h is found from Eq. (6) to be 

(apr/atl)r= (T/ N P) CI(d J / dv)L (U r/iV J) (d2 J / N). 
(8) 

Since (ap ,ll/ Ul'h is related to (3d?, the isothermal com­
pressibility of the clisordered hUice, by 

(9) 

one can write the stability condition as 

1 tiT (dJ)2 lIUI(IPJ) ---. -C1 - -- - >0. 
(3,Il7' N]2 dt' Xl dv2 -

(10) 

Now 1/ (3,1l7' will in general have a finite positive value 
which is a slowly varying function of temperature, while 
.I and its derivatives with respect to v will be finite 
non-zero quantities which are independent of tempera­
ture. The Ising internal energy will also be fmite at all 
temperatures; but the conligurational heat capacity at 
constant volume, C

" 
is known to approach very Jarge 

values in the vicinity of the crit ical point. The behavior 
of Cr is the crucial factor. 1f Cr approaches + 00 at 
the critical lemperature, there must be an instability 
near that point unless the p;lI-tic\e lattice is completely 
incompressible (in which case, 1/ (3,1l'l'= + 00) . This re­
sult depends only on our assumption of weak coupling 
in the model. 

For the two-dimensional Jsing model an exact ana­
lytical expression for Qr (and thus CI ) is available,1 
and Cr is known to have a logarithmic singularity at 
Tc: Equations (6)- (10) are still valid in two dimen­
sions if l ' is replaced by u, the surface area per lattice 
site, and P is understood Lo be it surface pressure 
dc:Jined by -[aA / a( :Yu )]1" In this case, the instability 
of a compressible lattice in the immediate vicinity of 
its critical point follows directly frolll Eq. (to) . This 
instability will wuse the system to undergo a spon­
taneous first-order phase transition across the unstable 
region. Associated with this first-order transition is 
the possibility of hysteresis. To illustrate these conclu-

sions we discuss below several different aspects of the 
behavior of a two-dimensional model. In this case, 
Eq. (6) allows us to easily calculate the Ising pressure 
PI from the known expression l for Ur if f and dJ/da I 

are specified. For a ferromagnet, J is simply related 
to the critica.l temperature ( J=O.44069 k1'c) and il 
is physically reasonable to expect that dJ / du<O. LeI 
us represent .T by Ihe form a/un, (where n is it small 
integer) as an illustral ive example. A typical disordered­
lauice pressure will be represented over a small range 
of u by 

Pd!= aO+al 1'- bu, 

where ao, ai, and b are positive constants. 

Constant External Pressure 

( 11) 

For a system at equilibrium uncler an external ap­
plied pressure, it is necessary that Pext= Pdl+PI. We 
treat the simplest case of zero external pressure, for 
which PI= - P,ll. Figure 1 shows a plot of PI and -Pill r 
against u at several temperatures 1\ < T2 < ... T6 < 1'7. 
An intersection of the two appropriate isotherms will 
give the.equilibriulll area u under zero external pressure 
if the stability condition (7 ) is satisfied ( that is, if 
the slope of -Pdt is grcater than that of PI)' Now 
consider the change in u with l' for Pex:t=O. As the 
temperature increases from 1\ to T5, u can increase 
continuously from UI to Us (Points 1 to 5 on Fig. 1), 
but as 1'-t1'5 from below the system becomes unstable 
(u 2A/au2=O) at Point 5 and there must be a first! 
order change in area from (T6 to (T5'. On further heating . 
u increases continuously frolll U5' to (T7. IIowever, on 
cooling from T7 to T3 the area can decrease smoothly 
from (T7 to (T/. As 1'-t1'3 from abmlc the instability 
occurs at Point 3' and there is a first-order change 
from u/ to U J. Relow 1'J , (T cleCl'eases smoothly on 
cooling. Thus, there can be a hysteresis loop near the 
critiwl point with a first-order jump in u at 1'5 on 
heat.ing and a first-order droiJ in (T at 1'a on cooling; 
this is shown schematically in an inset on Fig. 1. The I 

values 1'3 and Ts ddermine the maximum width of this 
loop since the system becomes mechallically unstable 
at Points 5 and 3'. Actually, there is it temperature T4 I 

for which the free energy at Point -t equals that at 
Point 4'; complete thermodynamic equilibrium would 
give a first-order transition at T4 and no hysteresis. 
The region bet ween J and 5 on heati ng or J' and 3' on 
cooling is only metastable, It is easy to show that a 
Maxwell equal-area rule is valid for determining T4 in 
this system. I 

The lower inset on Fig. 1 presents a schematic sketch 
of the temperature dependence of 1/ (31' in the critical 
region. On warming, as Ts is approached from below, 
1/ (37' approaches zero and then jumps to the value B 
after the first-order transition occurs. On cooling, as 
T3 is approached from abOt'e, 1/ (37' vanishes and jumps 
to the value 11 after the transition. If the system is in 
complete thermodynamic equilibrium, l / (3T never van-
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FiG. 1. Behavior of a t\l'o-d imensional 
Isi ng model as a funct ion of temperature i 
at vanishi ng exte rnal pressure. The family 

t ' , 
I : : 

of Cl/ /"l'CS P [ were caleu la tl:d at seven C1l 

e\'cnly-spaced temJleratures from 1', to 
r,. The family of struight !iIlCS- Pd l \l'ere ;;; 
drawn to represent a d isordered lat tice If) 

lIith typical comp ressib ili ty and thermal C1l 

expansion coefTic ients. The encircled nUIll - ci:: 
hcrs 1 and 7 indicate t.he sp in ami lall ice 
isotherms at 1'1 and 1'7. The insets repre­
sen t schematical ly the temperatu re de­
pendences of the a rea <F and of the recip­
rocal isothermal compressibilit y l / f:JT. 

I i,hes but has a singular point at T~. If the transItIon 
occurs in the ·metast.able rcgion but before thc mcchan­
ical instability point is reached ; tifF will show hystere­
sis anc! discontinuities bu t d ocs not vanish. 

If an ac t uid c rystal bchavcs like this moclel, it is 
impossible to bring it arbitrarily close to ,l i;)mbda 
point: a firs t-orde r t ransit ion occurs before the tCIl1-
perature reaches the thcoretical critical temperature. 
Indeed, un less great care is taken to ach ieve true 
thermodynamic equi librium, there are a ra nge of tem­
pCI'atures (suc h as Ta to 7'5 in Fig. 1), where the 
prope rti es depcnd on the history of the sample. 

Constant Temperature 

Let us look at the variation of a rea U as a function 
of the applied pressure pcxt . Figure 2 s hows, at. a given 
temperature, the Ising pressure and the negative of the 
disordered-lattice pressure as functions of u . At zero 
external pressure, the equiIiLrium point is at ... 1, which 
corresponds to a largely disordered system. As the 
external pressure is increased, the ordering of the sys­
tem increases and the area u decreases smoMhl y un t il 
the pressure reaches a value equal to Bl~' at wh ich 
mechanical insLability occurs. Thc sys tem spontane­
ollsly contracts to a n area ue correspond ing to Point C, 
II'hich is th e new equilih rium s tate under this exte rnal 
pressure of magnitude h= CC'=B JJ' . A furth er in­
crease in the external pressure causes a smooth decrease 
of t he area a nd completes thc ordering. If the pressure 
is now reduced, the sys tem is mechanically stable until 
the area reac hes the value UD>UC. At D the system is 
mechanically unstablc and spon taneo ll sly expand" 10 

Ihe value UB, the new equ ilibrium area und er Illis 
pressure of magnitude h = jig = ])J)' . Again UI\' IH,";­
si hility of hys teresis is predicted in a region whl! h 
corresponds to metastable (or local) equilibriulll. If 

A 8 

T 

the system were in complete thermodynamic equilib­
rium a first-order transition without hysteresis would 
take place at pressure P2. 

Constant Area 

If the a rea is m a intained constant by an applied pres­
sure and not by ri gid clamping, Inequality (10) is still 
valid . Th erefore on each curve pr( T) for a given area, 
there is a forbidd en zone in wh ich the intersection of 
th e isochores - /JJ1( T) and h ( 1') cloes not correspond 
to a stable stale. On fig. 3 a re plott ed severa l I sing iso­
chores corresponding to a reas Ul <U2< " ·U6<U7. The 

c· L--__ L.L-____ ~ ____ J-____ ~ 

PIG . 2. Behavior of a two-dimensional Ising mode l as a function 
of pressure at constant temperature. The insets represent sche­
matically the pressure dependence of the a rea <F and of the recipro­
ca l isothermal compressibi lity 1/ (3T. 
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FIG. 3. Behavior of a two-dimensional Ising model at constant 
volume. The family of C1tr!les P f were calculated at seven evenly 
spaced areas from O'l to 0'7. The !illes- Pd l wer~ ~~awn to represent 
a disordered lattice with typical compresslbtl.lty. and therm!ll 
expansion coemcients. The enc.ircled numbers l~dlcate tbe spm 
and lattice isocbores at the given areas. The mset rep:esents 
schematically the temperature dependence of the reciprocal 
isothermal compressibility l /f3 T. 

forbidden zones are shown as dashed lines. The negative 
disordered-lattice isochores - Pdl( T) are also plotted 
for areas eTa and eT7. Lct us assume we want to kcep the 
system at a constant area eTa. Under zero exter~al 
pressure, the equilibrium point is at A, correspondmg 
to a temperature TA • As the temperature is increased, 
the system can be kept at constant area eTa by applying 
an external pressure. When the temperature reaches 
Tl where the app ropriate external pressure is of mag­
nitude PI = BC, the system becomes mechanically un­
stable. Then the area will spontaneously increase to 
(say) eT7 which is a stable state at temperature Tl 
under an external pressure pl=BC=DE. In the range 
Tl < T < T2 it is impossible, by any manipulation of 
the external pressure,s to keep the area at value eTa. 
Above T2 it is again possible to maintain the area eTa. 
If the metastable equilibrium is disrupted before the 
mechanical instability point is reached, the range of 
temperature over which it is impossible to maintain 
constant area is widenee! somewhat. 

An inset on Fig. 3 shows the schematic variation of 
l /{3T as a function of temperature for a constant area 

8 There is, in principle, a way to k.eep the volu~e of a three­
dimensional crystal constant. It consists ~f clampmg the. crystal 
in an infinitely rigid holder. This is eq;tlvalent. to ma~mg the 
disordered lattice incompressible. In thl~ case. lIlequalt ty (1.0) 
is fulfilled at any temperature. In practIce tlus can not eaSIly 
be realized; one usually places the sample in a fluid under rressure 
which is externally set at some given value. 

eTa. At Tl and T 2 , l / {3T vanishes; the dashed lines 
represent the behavior expected if the area could be 
kept constant (i.e., if one could work in an unstable 
region). Because of the instability, the area of the 
crystal between TI and T2 depends on the way the 
experimental run is conducted . The actual area can 
correspond to an equilibrium point close to or far from 
an instability point. As a result, experimental values 
for l /{3T between Tl and T2 can vary between 0 and 
an upper value corresponding to the completely dis­
ordered state. Consequently, compressibility measure­
ments at constant area eTa are meaningful only outside , 
the temperature interval Tl < T < T 2. 

CONCLUSION 

The preceding illustrations of instability and hystere­
sis near a critical point have been given in terms of a 
two-dimensional model. The generalization of the dis­
cussion to a three-dimensional Ising model is quite 
easy. For a real three-dimensional crystal, l /{3d? is 
experimcn tally known to be fini te at temperatures 
above Te , and according to our model it is therefore 
finite at all temperatures. Recent approximate cal­
culations9•10 indicate that Cr for a cubic Ising model 
does approach infini ty as T approaches T e' If so, there 
will be a range of temperatures in the critical region 
for which the inequality (10) cannot be satisfied. If 
Cr does not in fact become infinite at Te the system 
may display a lambda transition. However, a very 
large finite value for C[ can still cause a soft crystal 
(for which l /{3dl is small) to become unstable. If the 
crystal does become unstable before the critical point 
is reached, there is also a region of metastability 
and the strong probability of hysteresis. The general 
nature of the hysteresis is the same as that shown 
in Figs. 1-3 since t.he isotherms and isochores for Pr 
and Pdl have qualitatively the same shape in three 
dimensions as in two (although the PI curve is less 
symmetrical in three dimensions). 

In summary, a first-order transition is to be expected 
in crystals near a lambda point unless some special 
kind of strong lattice-spin coupling is invoked . The 
observable effects of this instability should be large 
only when (a) the lattice is quite compressible ({3d lT 

large) and (b) the spin interactions are a sensitive 
function of distance (dJ / dv large). Thus, this phe­
nomenon is diffi cult to observe in many ferromagnetic 
solids. In Paper III we hope to show for ammonium 
chloride, which satisfies both Conditions (a) and (b), 
that the experimental data conform very well to the 
predict ions of this model. 

9 J. W. Essam and M. E. Fisher, J. Chern. Phys. 38, 802 
(1963) . 

10 D. S. Gaunt, M. E. Fisher, M. F. Sykes, and J. W. Essam, 
Phys. Rev. Letters 24, 713 (1964). 
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